期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preliminary Results of In-situ Stress Measurements along the Longmenshan Fault Zone after the Wenchuan M_s 8.0 Earthquake 被引量:32
1
作者 WU Manlu ZHANG Yueqiao +5 位作者 liao chunting CHEN Qunce MA Yinsheng WU Jinsheng YAN Junfeng OU Mingyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期746-753,共8页
Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake ha... Four months after the Wenchuan Ms 8 earthquake in western Sichuan, China, in situ stress measurements were carried out along the Longmenshan fault zone with the purpose of obtaining stress parameters for earthquake hazard assessment. In-situ stresses were measured in three new boreholes by using overcoring with the piezomagnetic stress gauges for shallow depths and hydraulic fracturing for lower depths. The maximum horizontal stress in shallow depths (-20 m) is about 4.3 MPa, oriented N19°E, in the epicenter area at Yingxiu Town, about 9.7 MPa, oriented N51°W, at Baoxing County in the southwestern Longmenshan range, and about 2.6 MPa, oriented N39°E, near Kangding in the southernmost zone of the Longmenshan range. Hydraulic fracturing at borehole depths from 100 to 400 m shows a tendency towards increasing stress with depth. A comparison with the results measured before the Wenchuan earthquake along the Longmenshan zone and in the Tibetan Plateau demonstrates that the stress level remains relatively high in the southwestern segment of the Longmenshan range, and is still moderate in the epicenter zone. These results provide a key appraisal for future assessment of earthquake hazards of the Longmenshan fault zone and the aftershock occurrences of the Wenchuan earthquake. 展开更多
关键词 Wenchuan Ms 8.0 earthquake in-situ stress measurement overcoring hydraulic fracturing Longmenshan fault belt
下载PDF
Piezomagnetic In-situ Stress Monitoring and its Application in the Longmenshan Fault Zone 被引量:4
2
作者 ZHANG Chongyuan WU Manlu +1 位作者 CHEN Qunce liao chunting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第5期1592-1602,共11页
The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, ... The relative change of in-situ stress is an inevitable outcome of differential movement among the crust plates. Conversely, changes of in-situ stress can also lead to deformation and instability of crustal rock mass, trigger activity of faults, and induce earthquakes. Hence, monitoring real-time change of in-situ stress is of great significance. Piezomagnetic in-situ stress monitoring has good and longtime applications in large engineering constructions and geoscience study fields in China. In this paper, the new piezomagnetic in-situ stress monitoring system is introduced and it not only has overall improvements in measuring cell's structure and property, stressing and orienting way, but also enhances integration and intelligence of control and data transmission system, in general, which greatly promotes installing efficiency of measuring probe and quality of monitoring data. This paper also discusses the responses of new piezomagnetic system in large earthquake events of in-situ stress monitoring station at Qiaoqi of Baoxing and Wenxian of Gansu. The monitoring data reflect adjustments and changes of tectonic stress field at the southwestern segment of and the northern area near the Longmenshan fault zone, which shows that the new system has a good performance and application prospect in the geoscience field. Data of the Qiaoqi stress-monitoring station manifest that the Lushan Earthquake did not release stress of the southwestern segment of the Longmenshan fault zone adequately and there still probably exists seismic risk in this region in the future. Combined with absolute in-situ stress measurement, carrying out long-term in-situ stress monitoring in typical tectonic position of important regions is of great importance for researchers to assess and study regional crust stability. 展开更多
关键词 in-situ stress monitoring new piezomagnetic in-situ stress monitoring system theLongmenshan fault zone regional stress field dynamic changes
下载PDF
Co-seismic Faults and Geological Hazards and Incidence of Active Fault of Wenchuan Ms 8.0 Earthquake,Sichuan,China 被引量:6
3
作者 MA Yinsheng LONG Changxing +7 位作者 TAN Chengxuan WANG Tao GONG Mingquan liao chunting WU Manlu SHI Wei DU Jianjun PAN Feng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第4期713-723,共11页
There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of whic... There are two co-seismic faults which developed when the Wenchuan earthquake happened. One occurred along the active fault zone in the central Longmen Mts. and the other in the front of Longmen Mts. The length of which is more than 270 kin and about 80 km respectively. The co-seismic fault shows a reverse flexure belt with strike of N45°-60°E in the ground, which caused uplift at its northwest side and subsidence at the southeast. The fault face dips to the northwest with a dip angle ranging from 50° to 60°. The vertical offset of the co-seismic fault ranges 2.5-3.0 m along the Yingxiu- Beichuan co-seismic fault, and 1.5-1.1 m along the Doujiangyan-Hanwang fault. Movement of the coseismic fault presents obvious segmented features along the active fault zone in central Longmen Mts. For instance, in the section from Yingxiu to Leigu town, thrust without evident slip occurred; while from Beichuan to Qingchuan, thrust and dextral strike-slip take place. Main movement along the front Longmen Mts. shows thrust without slip and segmented features. The area of earthquake intensity more than IX degree and the distribution of secondary geological hazards occurred along the hanging wall of co-seismic faults, and were consistent with the area of aftershock, and its width is less than 40km from co-seismic faults in the hanging wall. The secondary geological hazards, collapses, landslides, debris flows et al., concentrated in the hanging wall of co-seismic fault within 0-20 km from co-seismic fault. 展开更多
关键词 Wenchuan earthquake co-seismic fault geological hazards
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部