The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/P...The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/PM3 method based on the RHF/6-31G (TPC and TPP) or semiempirical PM3 (1, 2, 3, 4) optimized geometries. Calculation results showed TPC and TPP have C1 and D2h symmetry, respectively when N-H protons are localized on the nitrogen atoms. TPC is the second-order NLO active chromophore due to the cancellation of centrosymmetrical structure and its first hyperpolarizability β increases to 11.524×10^-30 esu. Under electrical dipole approximation, βvalues of bis-corroles 1, 2, 3 and 4 vary from 9.831×10^-30 to 14.221×10^-30 esu, and no much improvement in the first hyperpolarizability was observed as compared to TPC monomer.However, β values of bis-corroles 1, 2, 3 and 4 are improved by about 4 times as compared to their bis-porphyrin counterparts. The analysis of β components indicates that β of this kind of bis-corroles is mainly contributed from its radial component βr. With the variation of amino acid side chains, βHRS, β,βxyz, βr and βa of bis-corroles change remarkably. Chiral L-amino acid bridged bis-corroles 2, 3 and 4 have a right-handed helix structure, and their chiral component βxyz matches βxyz ∝ r^2 ζ/L^4 (helix parameters), showing the second-order chiral NLO response of these bis-corroles could be described by one-electron helical model theory. It was found that the radial component βr of chiral helix bis-corroles also matches βr ∝ r^2 ζ/L^4.展开更多
基金Supported by the NNSFC (20476034), Research Grants Council of Hongkong and SRF for ROCS, State Education Ministry
文摘The second-order nonlinear optical (NLO) properties of 5,10,15-triphenylcorrole (TPC), 5,10,15,20-tetraphenylporphyrin (TPP) and L-amino acid bridged bis-corroles 1,2,3 and 4 have been calculated by using TDHF/PM3 method based on the RHF/6-31G (TPC and TPP) or semiempirical PM3 (1, 2, 3, 4) optimized geometries. Calculation results showed TPC and TPP have C1 and D2h symmetry, respectively when N-H protons are localized on the nitrogen atoms. TPC is the second-order NLO active chromophore due to the cancellation of centrosymmetrical structure and its first hyperpolarizability β increases to 11.524×10^-30 esu. Under electrical dipole approximation, βvalues of bis-corroles 1, 2, 3 and 4 vary from 9.831×10^-30 to 14.221×10^-30 esu, and no much improvement in the first hyperpolarizability was observed as compared to TPC monomer.However, β values of bis-corroles 1, 2, 3 and 4 are improved by about 4 times as compared to their bis-porphyrin counterparts. The analysis of β components indicates that β of this kind of bis-corroles is mainly contributed from its radial component βr. With the variation of amino acid side chains, βHRS, β,βxyz, βr and βa of bis-corroles change remarkably. Chiral L-amino acid bridged bis-corroles 2, 3 and 4 have a right-handed helix structure, and their chiral component βxyz matches βxyz ∝ r^2 ζ/L^4 (helix parameters), showing the second-order chiral NLO response of these bis-corroles could be described by one-electron helical model theory. It was found that the radial component βr of chiral helix bis-corroles also matches βr ∝ r^2 ζ/L^4.