There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s...There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.展开更多
Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltr...Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltrimethylammonium bromide(DTAB), and cetylpyridinium chloride(CPC) were studied. The adsorption equilibrium data points were fitted to Freundlich isotherm equations. The adsorption of phenthoate and acetochlor were significantly enhanced by surfactant treatment of the clays. The amount of both pesticides adsorbed per unit mass of organoclay followed the order of TTA-kaolin < TTA-montmorillonite < TTA-bentonite, which is inconsistent with the organic carbon content of the clays. The removal efficiency of organomontmorillonite to treat acetochlor is in the order of CP(C 16 )-montmorillonite > TTA(C 14 )-montmorillonite > DTA(C 12 )-montmorillonite. Phenthoate is adsorbed to greater extent than acetochlor by each adsorbent, which may be due to the higher hydrophobicity of phenthoate, indicating considerable hydrophobic interaction between adsorbent/adsorbate systems.展开更多
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) and the National Natural Science Foundation (No. 40201026).
文摘There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.
文摘Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltrimethylammonium bromide(DTAB), and cetylpyridinium chloride(CPC) were studied. The adsorption equilibrium data points were fitted to Freundlich isotherm equations. The adsorption of phenthoate and acetochlor were significantly enhanced by surfactant treatment of the clays. The amount of both pesticides adsorbed per unit mass of organoclay followed the order of TTA-kaolin < TTA-montmorillonite < TTA-bentonite, which is inconsistent with the organic carbon content of the clays. The removal efficiency of organomontmorillonite to treat acetochlor is in the order of CP(C 16 )-montmorillonite > TTA(C 14 )-montmorillonite > DTA(C 12 )-montmorillonite. Phenthoate is adsorbed to greater extent than acetochlor by each adsorbent, which may be due to the higher hydrophobicity of phenthoate, indicating considerable hydrophobic interaction between adsorbent/adsorbate systems.