期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
In vivo imaging of the neuronal response to spinal cord injury:a narrative review
1
作者 Junhao Deng Chang Sun +5 位作者 Ying Zheng Jianpeng Gao Xiang Cui Yu Wang licheng zhang Peifu Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期811-817,共7页
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ... Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging. 展开更多
关键词 anterior horn neurons calcium imaging central nervous system dorsal horn neurons dorsal root ganglion in vivo imaging neuronal response spinal cord injury spinal cord two-photon microscopy
下载PDF
QGAE:用于生成问答对的端到端无答案问题生成模型
2
作者 李林枫 张立成 +1 位作者 朱池苇 毛震东 《中国科学技术大学学报》 CAS CSCD 北大核心 2024年第1期11-18,10,I0001,共10页
问题生成的目标是生成有意义且流畅的问题,以增加可用数据来解决问答类型标注语料库的缺乏问题。以带有可选答案的未注释文本作为输入内容,问题生成可以根据是否提供答案分为两种类型:有答案型和无答案型。即使在提供答案的情况下,生成... 问题生成的目标是生成有意义且流畅的问题,以增加可用数据来解决问答类型标注语料库的缺乏问题。以带有可选答案的未注释文本作为输入内容,问题生成可以根据是否提供答案分为两种类型:有答案型和无答案型。即使在提供答案的情况下,生成问题也是具有挑战性的,更不用说在没有提供答案的情况下,对于人类和机器来说生成高质量的问题更加困难。为了解决这个问题,我们提出了一种名为QGAE的新型端到端模型,它能够通过直接提取候选答案,将无答案的问题生成转化为有答案的问题生成。这种方法有效地利用未标记的数据来生成高质量的问答对,其端到端的设计使其比多阶段方法更加方便,后者需要至少两个预训练模型。此外,我们的模型获得了更好的平均分数和更大的多样性。我们的实验结果表明,QGAE在生成问答对方面取得了显著的进展,成为了一种充满潜力的问题生成方法。 展开更多
关键词 深度学习 自然语言处理 无答案问题生成 答案抽取
下载PDF
Bench-to-bedside strategies for osteoporotic fracture: from osteoimmunology to mechanosensation 被引量:10
3
作者 Yong Xie licheng zhang +3 位作者 Qi Xiong Yanpan Gao Wei Ge Peifu Tang 《Bone Research》 SCIE CAS CSCD 2019年第3期259-271,共13页
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery... Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery;however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence. 展开更多
关键词 COMMINUTED SKELETAL PRONE to
下载PDF
Skeleton-vasculature chain reaction: a novel insight into the mystery of homeostasis 被引量:6
4
作者 Ming Chen Yi Li +5 位作者 Xiang Huang Ya Gu Shang Li Pengbin Yin licheng zhang Peifu Tang 《Bone Research》 SCIE CAS CSCD 2021年第3期264-283,共20页
Angiogenesis and osteogenesis are coupled.However,the cellular and molecular regulation of these processes remains to be further investigated.Both tissues have recently been recognized as endocrine organs,which has st... Angiogenesis and osteogenesis are coupled.However,the cellular and molecular regulation of these processes remains to be further investigated.Both tissues have recently been recognized as endocrine organs,which has stimulated research interest in the screening and functional identification of novel paracrine factors from both tissues.This review aims to elaborate on the novelty and significance of endocrine regulatory loops between bone and the vasculature.In addition,research progress related to the bone vasculature,vessel-related skeletal diseases,pathological conditions,and angiogenesis-targeted therapeutic strategies are also summarized.With respect to future perspectives,new techniques such as single-cell sequencing,which can be used to show the cellular diversity and plasticity of both tissues,are facilitating progress in this field.Moreover,extracellular vesicle-mediated nuclear acid communication deserves further investigation.In conclusion,a deeper understanding of the cellular and molecular regulation of angiogenesis and osteogenesis coupling may offer an opportunity to identify new therapeutic targets. 展开更多
关键词 HOMEOSTASIS ORGANS diseases
下载PDF
Effect of rice-rice-rape rotation on physicochemical property and bacterial community of rhizosphere soil 被引量:4
5
作者 licheng zhang Juan Li Mingqing zhang 《Oil Crop Science》 2020年第3期149-155,共7页
Through collecting rhizosphere soil sample from a 30-year long-term fixed location test site that use“rice-ricerape”crop rotation(RRR)and“rice-rice-fallow”continuous cropping systems(RRF),this paper investigated e... Through collecting rhizosphere soil sample from a 30-year long-term fixed location test site that use“rice-ricerape”crop rotation(RRR)and“rice-rice-fallow”continuous cropping systems(RRF),this paper investigated effects of long-term crop rotation on physicochemical property and bacterial community of rhizosphere soil.Results showed that total nitrogen(TN),total phosphorus(TP)and available potassium(AK)contents in rhizosphere soil under long-term RRR were decreased by 28.09%,15.69%and 6.25%respectively.Alkali-hydrolyzable nitrogen(AN)and available phosphorus(AP)contents were 10.59%and 13.25%higher than those of soil in RRF respectively.Three soil samples collected during different periods also showed that RRR resulted in a lower rhizosphere soil pH than RRF.Clone library analysis revealed that significant difference in rhizosphere soil bacterial community was observed between RRR and RRF continuous cropping.Abundance ofα-Proteobacteria,β-Proteobacteria andγ-Proteobacteria were higher in rhizosphere soil of RRR compared to RRF.pH of rhizosphere soil was significantly correlated with Acidobacteria level,while total organic carbon(TOC)content was significantly correlated with Proteobacteria level.Long-term RRR enhanced conversion of N and P in rhizosphere soil,increased bio-availability to crop,and promoted diversity of soil bacterial community.Bacterial diversity in RRR could be ecological significance in maintaining soil fertility and functionality. 展开更多
关键词 Crop rotation RHIZOSPHERE Bacterial community Soil physicochemical properties Located experiment
下载PDF
Influence of rotation system on siderophere-producing microorganism(SPM) in rhizosphere soil of southern China
6
作者 licheng zhang Juan Li Mingqing zhang 《Oil Crop Science》 2019年第3期175-182,共8页
Soil siderophores are important for crop growth,benefit ferric iron absorption of root,and are affected by cropping patterns.The objective of this study was to evaluate the quantity of siderophores in soil of 2 contin... Soil siderophores are important for crop growth,benefit ferric iron absorption of root,and are affected by cropping patterns.The objective of this study was to evaluate the quantity of siderophores in soil of 2 continuous crop rotation patterns over 30 years in Anren country,China.Quantity and siderophore-producing capability of microorganisms in rice-riceoilseed rape(DDY)rotation and rice-rice(DD)rontinuous cropping rhizosphere soil were tested and analyzed by chrome azurol S method.Isolated strains were used to identify siderophore-producing microorganism(SPM)by PCR amplification and DNA sequencing.Results showed that 9 siderophore-producing bacteria strains were isolated from DDY rhizosphere soil while 7 strains were identified from DD rhizosphere soil.The mean solubility index which representing siderophore-producing capability of strains was 3.05.PCR amplification results indicated that bacterial were the major SPM in soil.This research indicates that crop rotation systems could drive microorganisms to produce siderophores and enrich them in bacterial communities. 展开更多
关键词 rice-rice-oilseed RAPE (DDY) rotation rice-rice (DD) continuous CROPPING siderophere-producing MICROORGANISM (SPM) rhizosphere soil strain identification
下载PDF
CEPC Technical Design Report 被引量:1
7
作者 Waleed Abdallah Tiago Carlos Adorno de Freitas +1111 位作者 Konstantin Afanaciev Shakeel Ahmad Ijaz Ahmed Xiaocong Ai Abid Aleem Wolfgang Altmannshofer Fabio Alves Weiming An Rui An Daniele Paolo Anderle Stefan Antusch Yasuo Arai Andrej Arbuzov Abdesslam Arhrib Mustafa Ashry Sha Bai Yu Bai Yang Bai Vipul Bairathi Csaba Balazs Philip Bambade Yong Ban Tripamo Bandyopadhyay Shou-Shan Bao Desmond P.Barber Ayse Bat Varvara Batozskaya Subash Chandra Behera Alexander Belyaev Michele Bertucci Xiao-Jun Bi Yuanjie Bi Tianjian Bian Fabrizio Bianchi Thomas Biekotter Michela Biglietti Shalva Bilanishvili Deng Binglin Denis Bodrov Anton Bogomyagkov Serge Bondarenko Stewart Boogert Maarten Boonekamp Marcello Borri Angelo Bosotti Vincent Boudry Mohammed Boukidi Igor Boyko Ivanka Bozovic Giuseppe Bozzi Jean-Claude Brient Anastasiia Budzinskaya Masroor Bukhari Vladimir Bytev Giacomo Cacciapaglia Hua Cai Wenyong Cai Wujun Cai Yijian Cai Yizhou Cai Yuchen Cai Haiying Cai Huacheng Cai Lorenzo Calibbi Junsong Cang Guofu Cao Jianshe Cao Antoine Chance Xuejun Chang Yue Chang Zhe Chang Xinyuan Chang Wei Chao Auttakit Chatrabhuti Yimin Che Yuzhi Che Bin Chen Danping Chen Fuqing Chen Fusan Chen Gang Chen Guoming Chen Hua-Xing Chen Huirun Chen Jinhui Chen Ji-Yuan Chen Kai Chen Mali Chen Mingjun Chen Mingshui Chen Ning Chen Shanhong Chen Shanzhen Chen Shao-Long Chen Shaomin Chen Shiqiang Chen Tianlu Chen Wei Chen Xiang Chen Xiaoyu Chen Xin Chen Xun Chen Xurong Chen Ye Chen Ying Chen Yukai Chen Zelin Chen Zilin Chen Gang Chen Boping Chen Chunhui Chen Hok Chuen Cheng Huajie Cheng Shan Cheng Tongguang Cheng Yunlong Chi Pietro Chimenti Wen Han Chiu Guk Cho Ming-Chung Chu Xiaotong Chu Ziliang Chu Guglielmo Coloretti Andreas Crivellin Hanhua Cui Xiaohao Cui Zhaoyuan Cui Brunella D'Anzi Ling-Yun Dai Xinchen Dai Xuwen Dai Antonio De Maria Nicola De Filippis Christophe De La Taille Francesca De Mori Chiara De Sio Elisa Del Core Shuangxue Deng Wei-Tian Deng Zhi Deng Ziyan Deng Bhupal Dev Tang Dewen Biagio Di Micco Ran Ding Siqin Dingl Yadong Ding Haiyi Dong Jianing Dong Jing Dong Lan Dong Mingyi Dong Xu Dong Yipei Dong Yubing Dong Milos Dordevic Marco Drewes Mingxuan Du Mingxuan Du Qianqian Du Xiaokang Du Yanyan Du Yong Du Yunfei Du Chun-Gui Duan Zhe Duan Yahor Dydyshka Ulrik Egede Walaa Elmetenawee Yun Eo Ka Yan Fan Kuanjun Fan Yunyun Fan Bo Fang Shuangshi Fang Yuquan Fang Ada Farilla Riccardo Farinelli Muhammad Farooq Angeles Faus Golfe Almaz Fazliakhmetov Rujun Fei Bo Feng Chong Feng Junhua Feng Xu Feng Zhuoran Feng Zhuoran Feng Luis Roberto Flores Castillo Etienne Forest Andrew Fowlie Harald Fox Hai-Bing Fu Jinyu Fu Benjamin Fuks Yoshihiro Funakoshi Emidio Gabrielli Nan Gan Li Gang Jie Gao Meisen Gao Wenbin Gao Wenchun Gao Yu Gao Yuanning Gao Zhanxiang Gao Yanyan Gao Kun Ge Shao-Feng Ge Zhenwu Ge Li-Sheng Geng Qinglin Geng Chao-Qiang Geng Swagata Ghosh Antonio Gioiosa Leonid Gladilin Ti Gong Stefania Gori Quanbu Gou Sebastian Grinstein Chenxi Gu Gerardo Guillermo Joao Guimaraes da Costa Dizhou Guo Fangyi Guo Jiacheng Guo Jun Guo Lei Guo Lei Guo Xia Guo Xin-Heng Guo Xinyang Guo Yun Guo Yunqiang Guo Yuping Guo Zhi-Hui Guo Alejandro Gutierrez-Rodriguez Seungkyu Ha Noman Habib Jan Hajer Francois Hammer Chengcheng Han Huayong Han Jifeng Han Liang Han Liangliang Han Ruixiong Han Yang Han Yezi Han Yuanying Han Tao Han Jiankui Hao Xiqing Hao Xiqing Hao Chuanqi He Dayong He Dongbing He Guangyuan He Hong-Jian He Jibo He Jun He Longyan He Xiang He Xiao-Gang He Zhenqiang He Klaus Heinemann Sven Heinemeyer Yuekun Heng Maria A.Hernandez-Ruiz Jiamin Hong Yuenkeung Hor George W.S.Hou Xiantao Hou Xiaonan Hou Zhilong Hou Suen Hou Caishi Hu Chen Hu Dake Hu Haiming Hu Jiagen Hu Jun Hu Kun Hu Shouyang Hu Yongcai Hu Yu Hu Zhen Hu Zhehao Hua Jianfei Hua Chao-Shang Huang Fa Peng Huang Guangshun Huang Jinshu Huang Ke Huang Liangsheng Huang Shuhui Huang Xingtao Huang Xu-Guang Huang Yanping Huang Yonggang Huang Yongsheng Huang Zimiao Huang Chen Huanyuan Changgi Hua Jiaqi Hui Lihua Huo Talab Hussain Kyuyeong Hwang Ara loannisian Munawar Iqbal Paul Jackson Shahriyar Jafarzade Haeun Jang Seoyun Jang Daheng Ji Qingping Ji Quan Ji Xiaolu Ji Jingguang Jia Jinsheng Jia Xuewei Jia Zihang Ja Cailian Jiang Han Ren Jiang Houbing Jiang Jun Jiang Xiaowei Jiang Xin Jiang Xuhui Jiang Yongcheng Jiang Zhongjian Jiang Cheng Jiang Ruiqi Jiao Dapeng Jin Shan Jin Song Jin Yi Jin Junji Jis Sunghoon Jung Goran Kacarevic Eric Kajfasz Lidia Kalinovskaya Aleksei Kampf Wen Kang Xian-Wei Kang Xiaolin Kang Biswajit Karmakar Zhiyong Ke Rijeesh Keloth Alamgir Khan Hamzeh Khanpour Khanchai Khosonthongkee KhanchaiKhosonthongkee Bobae Kim Dongwoon Kim Mi Ran Kim Minsuk Kim Sungwon Kim On Kim Michael Klasen Sanghyun Ko Ivan Koop Vitaliy Kornienko Bryan Kortman Gennady Kozlov Shiqing Kuang Mukesh Kumar Chia Ming Kuo Tsz Hong Kwok Fran cois Sylvain Ren Lagarde Pei-Zhu Lai Imad Laktineh Xiaofei Lan Zuxiu Lan Lia Lavezzi Justin Lee Junghyun Lee Sehwook Lee Ge Lei Roy Lemmon longxiang Leng Sze Ching Leung Hai Tao Li Bingzhi Li Bo Li Bo Li Changhong Li Chao Li Cheng Li Cheng Li Chunhua Li Cui Li Dazhang Li Dikai Li Fei Li Gang Li Gang Li Gang Li Gaosong Li Haibo Li Haifeng Li Hai-Jun Li Haotian Li Hengne Li Honglei Li Huijing Li Jialin Li Jingyi Li Jinmian Li Jun Li Leyi Li Liang Li Ling Li Mei Li Meng Li Minxian Li Pei-Rong Li Qiang Li Shaopeng Li Shenghe Li Shu Li Shuo Li Teng Li Tiange Li Tong Li Weichang Li Weidong Li Wenjun Li Xiaoling Li Xiaomei Li Xiaonan Li Xiaoping Li Xiaoting Li Xin Li Xinqiang Li Xuekang Li Yang Li Yanwei Li Yiming Li Ying Li Ying-Ying Li Yonggang Li Yonglin Li Yufeng Li Yuhui Li Zhan Li Zhao Li Zhiji Li Tong Li Lingfeng Li Fei Li Jing Liang Jinhan Liang Zhijun Liang Guangrui Liao Hean Liao Jiajun Liao Libo Liao Longzhou Liao Yi Liao Yipu Liao Ayut Limphirat AyutLimphirat Tao Lin Weiping Lin Yufu Lin Yugen Lin Beijiang Liu Bo Liu Danning Liu Dong Liu Fu-Hu Liu Hongbang Liu Huangcheng Liu Hui Liu Huiling Liu Jia Liu Jia Liu Jiaming Liu Jianbei Liu Jianyi Liu Jingdong Liu Jinhua Liu Kai Liu Kang Liu Kun Liu Mengyao Liu Peng Liu Pengcheng Liu Qibin Liu Shan Liu Shidong Liu Shuang Liu Shubin Liu Tao Liu Tao Liu Tong Liu Wei Liu Xiang Liu Xiao-Hai Liu Xiaohui Liu Xiaoyu Liu Xin Liu Xinglin Liu Xingquan Liu Yang Liu Yanlin Liu Yao-Bei Liu Yi Liu Yiming Liu Yong Liu Yonglu Liu Yu Liu Yubin Liu Yudong Liu Yulong Liu Zhaofeng Liu Zhen Liu Zhenchao Liu Zhi Liu Zhi-Feng Liu Zhiqing Liu Zhongfu Liu Zuowei Liu Mia Liu Zhen Liu Xiaoyang Liu Xinchou Lou Cai-Dian Lu Jun-Xu Lu Qiu Zhen Lu Shang Lu Shang Lu Wenxi Lu Xiaohan Lu Yunpeng Lu Zhiyong Lu Xianguo Lu Wei Lu Bayarto Lubsandorzhiev Sultim Lubsandorzhiev Arslan Lukanov Jinliang Luo Tao Luo xiaoan Luo Xiaofeng Luo Xiaolan Luo Jindong Lv Feng Lyu Xiao-Rui Lyu Kun-Feng Lyu Ande Ma Hong-Hao Ma Jun-Li Ma Kai Ma Lishuang Ma Na Ma Renjie Ma Weihu Ma Xinpeng Ma Yanling Ma Yan-Qing Ma Yongsheng Ma Zhonghui Ma Zhongjian Ma Yang Ma Mousam Maity Lining Mao Yanmin Mao Yaxian Mao Aure lien Martens Caccia Massimo Luigi Maria Shigeki Matsumoto Bruce Mellado Davide Meloni Lingling Men Cai Meng Lingxin Meng Zhenghui Mi Yuhui Miao Mauro Migliorati Lei Ming Vasiliki A.Mitsou Laura Monaco Arthur Moraes Karabo Mosala Ahmad Moursy Lichao Mu Zhihui Mu Nickolai Muchnoi Daniel Muenstermann DanielMuenstermann Pankaj Munbodh William John Murray Jerome Nanni Dmitry Nanzanov Changshan Nie Sergei Nikitin Feipeng Ning Guozhu Ning Jia-Shu Niu Juan-Juan Niu Yan Niu Edward Khomotso Nkadimeng Kazuhito Ohmi Katsunobu Oide Hideki Okawa Mohamed Ouchemhou Qun Ouyang Daniele Paesani Carlo Pagani Stathes Paganis Collette Pakuza Jiangyang Pan Juntong Pan Tong Pan Xiang Pan Papia Panda Saraswati Pandey Mila Pandurovic Rocco Paparella Roman Pasechnik Emilie Passemar r Hua Pei Xiaohua Peng Xinye Peng Yuemei Peng Jialun Ping Ronggang Ping Souvik Priyam Adhya Baohua Qi Hang Qi Huirong Qi Ming Qi Sen Qian Zhuoni Qian Congfeng Qiao Guangyou Qin Jiajia Qin Laishun Qin Liqing Qin Qin Qin Xiaoshuai Qin Zhonghua Qin Guofeng Qu Antonio Racioppi Michael Ramsey-Musolf Shabbar Raza Vladimir Rekovic Jing Ren Jirgen Reuter Tania Robens Giancarlo Rossi Manqi Ruan Manqi Ruan Leonid Rumyantsev Min Sang Ryu Renat Sadykov Minjing Sang Juan Jose Sanz-Cillero Miroslav Saur Nishil Savla Michael A.Schmidt Daniele Sertore Ron Settles Peng Sha Ding-Yu Shao Ligang Shao Hua-Sheng Shao Xin She Chuang Shen Hong-Fei Shen Jian-Ming Shen Peixun Shen Qiuping Shen Zhongtao Shen Shuqi Sheng Haoyu Shi Hua Shi Qi Shi Shusu Shi Xiaolei Shi Xin Shi Yukun Shi Zhan Shi Ian Shipsey Gary Shiu Chang Shu Zong-Guo Si Andrei Sidorenkov Ivan Smiljanc Aodong Song Huayang Song Jiaojiao Song Jinxing Song Siyuan Song Weimin Song Weizheng Song Zhi Song Shashwat Sourav Paolo Spruzzola Feng Su Shengsen Su Wei Su Shufang Su Yanfeng Sui Zexuan Sui Michael Sullivan Baiyang Sun Guoqiang Sun Hao Sun Hao-Kai Sun Junfeng Sun Liang Sun Mengcheng Sunl Pengfei Sun Sichun Sun Xianjing Sun Xiaohu Sun Xilei Sun Xingyang Sun Xin-Yuan Sun Yanjun Sun Yongzhao Sun Yue Sun Zheng Sun Zheng Sun Narumon Suwonjandee Elsayed Tag Eldin Biao Tan Bo Tang Chuanxiang Tang Gao Tang Guangyi Tang Jian Tang Jingyu Tang Liang Tang Ying'Ao Tang Junquan Tao Abdel Nasser Taw fik Geoffrey Taylor Valery Telnov Saike Tian Riccardo Torre Wladyslaw Henryk Trzaska Dmitri Tsybychev Yanjun Tu Shengquan Tuo Michael Tytgat Ghalib Ul Islam Nikita Ushakov German Valencia Jaap Velthuis Alessandro Vicini Trevor Vickey Ivana Vidakovic Henri Videau Raymond Volkas Dmitry Voronin Natasa Vukasinovic Xia Wan Xuying Wan Xiao Wang Anqing Wang Bin Wang Chengtao Wang Chuanye Wang Ci Wang Dayong Wang Dou Wang En Wang Fei Wang Fei Wang Guanwen Wang Guo-Li Wang Haijing Wang Haolin Wang Jia Wang Jian Wang Jianchun Wang Jianli Wang Jiawei Wang Jin Wang Jin-Wei Wang Joseph Wang Kechen Wang Lechun Wang Lei Wang Liguo Wang Lijiao Wang Lu Wang Meng Wang Na Wang Pengcheng Wang Qian Wang Qun Wang Shu Lin Wang Shudong Wang Taofeng Wang Tianhong Wang Tianyang Wang Tong Wang Wei Wang Wei Wang Xiaolong Wang Xiaolong Wang Xiaoning Wang Xiao-Ping Wang Xiongfei Wang Xujian Wang Yaping Wang Yaqian Wang Yi Wang Yiao Wang Yifang Wang Yilun Wang Yiwei Wang You-Kai Wang Yuanping Wang Yuexin Wang Yuhao Wang Yu-Ming Wang Yuting Wang Zhen Wang Zhigang Wang Weiping Wang Zeren Simon Wang Biao Wang Hui Wang Lian-Tao Wang Zihui Wang Zirui Wang Jia Wang Tong Wang Daihui Wei Shujun Wei Wei Wei Xiaomin Wei Yuanyuan Wei Yingjie Wei Liangjian Wen Xuejun Wen Yufeng Wen Martin White Peter Williams Zef Wolffs William John Womersley Baona Wu Bobing Wu Guanjian Wu Jinfei Wu Lei Wu Lina Wu Linghui Wu Minlin Wu Peiwen Wu Qi Wu Qun Wu Tianya Wu Xiang Wu Xiaohong Wu Xing-Gang Wu Xuehui Wu Yaru Wu Yongcheng Wu Yuwen Wu Zhi Wu Xin Wu Lei Xia Ligang Xia Shang Xia Benhou Xiang Dao Xiang Zhiyu Xiang Bo-Wen Xiao Chu-Wen Xiao Dong Xiao Guangyan Xiao Han Xiao Meng Xiao Ouzheng Xiao Rui-Qing Xiao Xiang Xiao Yichen Xiao Ying Xiao Yu Xiao Yunlong Xiao Zhenjun Xiao Hengyuan Xiao Nian Xie Yuehong Xie Tianmu Xin Ye Xing Zhizhong Xing Da Xu Fang Xu Fanrong Xu Haisheng Xu Haocheng Xu Ji Xu Miaofu Xu Qingjin Xu Qingnian Xu Wei Xu Wei Xu Weixi Xu Xinping Xu Zhen Xu Zijun Xu Zehua Xu Yaoyuan Xu Feifei Xue Baojun Yan Bin Yan Fen Yan Fucheng Yan Jiaming Yan Liang Yan Luping Yan Qi-Shu Yan Wenbiao Yan Yupeng Yan Luping Yan Haoyue Yan Dong Yang Fengying Yang Guicheng Yang Haijun Yang Jin Min Yang Jing Yang Lan Yang Li Yang Li Lin Yang Lili Yang Litao Yang Mei Yang Qiaoli Yang Tiansen Yang Xiaochen Yang Yingjun Yang Yueling Yang Zhengyong Yang Zhenwei Yang Youhua Yang Xiancong Yang De-Liang Yao Shi Yao Lei Ye Lingxi Ye Mei Ye Rui Ye Rui Ye Yecheng Ye Vitaly Yermolchyk Kai Yi Li Yi Yang Yi Di Yin Peng-Fei Yin Shenghua Yin Ze Yin Zhongbao Yin zhang Yinhong Hwi Dong Yoo Zhengyun You Charles Young Boxiang Yu Chenghui Yu Fusheng Yu Jie-Sheng Yu Jinqing Yu Lingda Yu Zhao-Huan Yu Felix Yu Bingrong Yu Changzheng Yuan Li Yuan Xing-Bo Yuan Youjin Yuan Junhui Yue Qian Yue Baobiao Yue Un Nisa Zaib Riccardo Zanzottera Hao Zeng Ming Zeng Jian Zhai Jiyuan Zhai Xin Zhe Zhai Xi-Jie Zhan Ben-Wei zhang Bolun zhang Di zhang Guangyi zhang Hao zhang Hong-Hao zhang Huaqiao zhang Hui zhang Jialiang zhang Jianyu zhang Jianzhong zhang Jiehao zhang Jielei zhang Jingru zhang Jinxian zhang Junsong zhang Junxing zhang Lei zhang Lei zhang Liang zhang licheng zhang Liming zhang Linhao zhang Luyan zhang Mengchao zhang Rao zhang Shulei zhang Wan zhang Wenchao zhang Xiangzhen zhang Xiaomei zhang Xiaoming zhang Xiaoxu zhang Xiaoyu zhang Xuantong zhang Xueyao zhang Yang zhang Yang zhang Yanxi zhang Yao zhang Ying zhang Yixiang zhang Yizhou zhang Yongchao zhang Yu zhang Yuan zhang Yujie zhang Yulei zhang Yumei zhang Yunlong zhang Zhandong zhang Zhaoru zhang Zhen-Hua zhang Zhenyu zhang Zhichao zhang Zhi-Qing zhang Zhuo zhang Zhiqing zhang Cong zhang Tianliang zhang Luyan zhang Guang Zhao Hongyun Zhao Jie Zhao Jingxia Zhao Jingyi Zhao Ling Zhao Luyang Zhao Mei Zhao Minggang Zhao Mingrui Zhao Qiang Zhao Ruiguang Zhao Tongxian Zhao Yaliang Zhao Ying Zhao Yue Zhao Zhiyu Zhao Zhuo Zhao Alexey Zhemchugov Hongjuan Zheng Jinchao Zheng Liang Zheng Ran Zheng shanxi zheng Xu-Chang Zheng Wang Zhile Weicai Zhong Yi-Ming Zhong Chen Zhou Daicui Zhou Jianxin Zhou Jing Zhou Jing Zhou Ning Zhou Qi-Dong Zhou Shiyu Zhou Shun Zhou Sihong Zhou Xiang Zhou Xingyu Zhou Yang Zhou Yong Zhou Yu-Feng Zhou Zusheng Zhou Demin Zhou Dechong Zhu Hongbo Zhu Huaxing Zhu Jingya Zhu Kai Zhu Pengxuan Zhu Ruilin Zhu Xianglei Zhu Yingshun Zhu Yongfeng Zhu Xiao Zhuang Xuai Zhuang Mikhail Zobov zhanguo Zong Cong Zou Hongying Zou 《Radiation Detection Technology and Methods》 CSCD 2024年第1期I0003-I0016,1-1091,共1105页
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3... The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s. 展开更多
关键词 initiated EXCEEDING PRECISE
原文传递
Clinical guidelines for indications,techniques,and complications of autogenous bone grafting
8
作者 Jianzheng zhang Shaoguang Li +17 位作者 Hongying He Li Han Simeng zhang Lin Yang Wenxing Han Xiaowei Wang Jie Gao Jianwen Zhao Weidong Shi Zhuo Wu Hao Wang Zhicheng zhang licheng zhang Wei Chen Qingtang Zhu Tiansheng Sun Peifu Tang Yingze zhang 《Chinese Medical Journal》 SCIE CAS CSCD 2024年第1期5-7,共3页
Autogenous bone grafts have long been considered the“gold standard”and most effective material in bone regeneration procedures.[1]Autogenous bone grafts are used to repair bone defects caused by nonunion,infection,t... Autogenous bone grafts have long been considered the“gold standard”and most effective material in bone regeneration procedures.[1]Autogenous bone grafts are used to repair bone defects caused by nonunion,infection,tumor resection,and spinal and joint fusion.[2]It has been reported that more than 200,000 autologous bone grafts are performed in the United States each year.[3]Although there are no specific statistics on the annual number of bone grafts performed in China,autologous bone grafting is the most common surgical technique in orthopedics.The iliac crest remains the most common donor site,along with the fibula,ribs,tibial metaphysis,proximal humerus,distal radius,and greater trochanter.[4,5]Various bone-graft options provide different amounts and qualities of cortical,cancellous,and corticocancellous bone.[6,7]Autogenous bone graft is osteogenic,histocompatible,provides structural support. 展开更多
关键词 GRAFTING GRAFT UNION
原文传递
Simultaneous dual-region two-photon imaging of biological dynamics spanning over 9 mm in vivo
9
作者 CHI LIU CHENG JIN +3 位作者 JUNHAO DENG JUNHAO LIANG licheng zhang LINGJIE KONG 《Photonics Research》 SCIE EI CAS CSCD 2024年第3期456-464,共9页
Biodynamical processes,especially in system biology,that occur far apart in space may be highly correlated.To study such biodynamics,simultaneous imaging over a large span at high spatio-temporal resolutions is highly... Biodynamical processes,especially in system biology,that occur far apart in space may be highly correlated.To study such biodynamics,simultaneous imaging over a large span at high spatio-temporal resolutions is highly desired.For example,large-scale recording of neural network activities over various brain regions is indispensable in neuroscience.However,limited by the field-of-view(FoV)of conventional microscopes,simultaneous recording of laterally distant regions at high spatio-temporal resolutions is highly challenging.Here,we propose to extend the distance of simultaneous recording regions with a custom micro-mirror unit,taking advantage of the long working distance of the objective and spatio-temporal multiplexing.We demonstrate simultaneous dual-region two-photon imaging,spanning as large as 9 mm,which is 4 times larger than the nominal FoV of the objective.We verify the system performance in in vivo imaging of neural activities and vascular dilations,simultaneously,at two regions in mouse brains as well as in spinal cords,respectively.The adoption of our proposed scheme will promote the study of systematic biology,such as system neuroscience and system immunology. 展开更多
关键词 RECORDING VIVO DYNAMICS
原文传递
Application of photocrosslinkable hydrogels based on photolithography 3D bioprinting technology in bone tissue engineering 被引量:3
10
作者 Jianpeng Gao Xiao Liu +6 位作者 Junyao Cheng Junhao Deng Zhenchuan Han Ming Li Xiumei Wang Jianheng Liu licheng zhang 《Regenerative Biomaterials》 SCIE EI CSCD 2023年第1期904-918,共15页
Bone tissue engineering(BTE)has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders.Photocrosslinkable hydrogels(PCHs)with good biocompatibility and bi... Bone tissue engineering(BTE)has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders.Photocrosslinkable hydrogels(PCHs)with good biocompatibility and biodegradability can significantly promote the migration,proliferation and differentiation of cells and have been widely used in BTE.Moreover,photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone,meeting the structural requirements of bone regeneration.Nanomaterials,cells,drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE.In this review,we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE.Finally,the challenges and potential future approaches for bone defects are outlined. 展开更多
关键词 photocrosslinkable hydrogels photolithography 3D bioprinting bone tissue engineering bone regeneration bone defect
原文传递
Simulation study of the performance of quadruple-GEM detectors
11
作者 Yue Wang licheng zhang +2 位作者 Aera Jung Dayong Wang Yong Ban 《Radiation Detection Technology and Methods》 CSCD 2023年第1期107-116,共10页
Background Gas Electron Multiplier(GEM)detectors are widely used for high-energy physics experiments,such as the triple-GEM detector installed in CMS,due to their excellent performance.A quadruple-GEM detector is rega... Background Gas Electron Multiplier(GEM)detectors are widely used for high-energy physics experiments,such as the triple-GEM detector installed in CMS,due to their excellent performance.A quadruple-GEM detector is regarded as the candidate for the upgrade projects of the High Luminosity LHC(HL-LHC).Method In this paper,key performance characteristics of quadruple-GEM detectors are studied in detail based on Monte Carlo simulation using the Garfield++and ANSYS software packages.The parameterization method is adopted.Result The spatial and time resolution,effective gain,efficiency,and electron transparency are obtained via simulation for different detector geometries and operating conditions.We create a quadruple-GEM structure that meets the geometric requirements of the CMS endcap muon detectors.Conclusion These studies help to understand the physical mechanisms of GEM detectors and provide references for the detector design,operating condition optimization and technical scheme selection in future applications. 展开更多
关键词 Quadruple-GEM Monte Carlo simulation RESOLUTION GAIN Electron transparency Efficiency
原文传递
Osteogenesis effects of magnetic nanoparticles modified-porous scaffolds for the reconstruction of bone defect after bone tumor resection 被引量:5
12
作者 Ming Li Jianheng Liu +7 位作者 Xiang Cui Guofei Sun Jianwei Hu Sijia Xu Fei Yang licheng zhang XiumeiWang Peifu Tang 《Regenerative Biomaterials》 SCIE 2019年第6期373-381,共9页
The treatment of bone defect after bone tumor resection is a great challenge for orthopedic surgeons.It should consider that not only to inhibit tumor growth and recurrence,but also to repair the defect and preserve t... The treatment of bone defect after bone tumor resection is a great challenge for orthopedic surgeons.It should consider that not only to inhibit tumor growth and recurrence,but also to repair the defect and preserve the limb function.Hence,it is necessary to find an ideal functional biomaterial that can repair bone defects and inactivate tumor.Magnetic nanoparticles(MNPs)have its unique advantages to achieve targeted hyperthermia to avoid damage to surrounding normal tissues and promote osteoblastic activity and bone formation.Based on the previous stage,we successfully prepared hydroxyapatite(HAP)composite poly(lactic-co-glycolic acid)(PLGA)scaffolds and verified its good osteogenic properties,in this study,we produced an HAP composite PLGA scaffolds modified with MNPs.The composite scaffold showed appropriate porosity and mechanical characteristics,while MNPs possessed excellent magnetic and thermal properties.The cytological assay indicated that the MNPs have antitumor ability and the composite scaffold possessed good biocompatibility.In vivo bone defect repair experiment revealed that the composite scaffold had good osteogenic capacity.Hence,we could demonstrate that the composite scaffolds have a good effect in bone repair,which could provide a potential approach for repairing bone defect after bone tumor excision. 展开更多
关键词 bone tumor magnetic nanomaterials PLGA scaffold bone repair
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部