Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The ho...Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The hole-transport layer is a N,N’-bis(3-methyphenyl)-N,N’-diphenylbenzidine film. The doped emitting layer consists of 8-(quinolinolate)-aluminum as the host and rubrene as the emission dopant. The doped device demonstrated a brightness in excess of 40 000 cd/m 2 and the maximum external quantum efficiency of 3.4%, which is about six times and four times respectively greater than those of the undoped device. For no packaged deviced, a luminance half-life on the order of about 230 h has been achieved under a constant current density of 15 mA/cm 2, starting at 500 cd/m 2 at the room temperature.展开更多
基金The National Natural Science Foundation of China , National "863" P
文摘Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The hole-transport layer is a N,N’-bis(3-methyphenyl)-N,N’-diphenylbenzidine film. The doped emitting layer consists of 8-(quinolinolate)-aluminum as the host and rubrene as the emission dopant. The doped device demonstrated a brightness in excess of 40 000 cd/m 2 and the maximum external quantum efficiency of 3.4%, which is about six times and four times respectively greater than those of the undoped device. For no packaged deviced, a luminance half-life on the order of about 230 h has been achieved under a constant current density of 15 mA/cm 2, starting at 500 cd/m 2 at the room temperature.