The one-dimensional transient quantum Euler-Poisson system for semiconductors is studied in a bounded interval. The quantum correction can be interpreted as a dispersive regularization of the classical hydrodynamic eq...The one-dimensional transient quantum Euler-Poisson system for semiconductors is studied in a bounded interval. The quantum correction can be interpreted as a dispersive regularization of the classical hydrodynamic equations and mechanical effects. The existence and uniqueness of local-in-time solutions are proved with lower regularity and without the restriction on the smallness of velocity, where the pressure-density is general (can be non-convex or non-monotone).展开更多
In this paper, we prove the existence and uniqueness of global solutions in H^s(R^3) ( s∈R, s≥0) for the initial value problem of the bipolar Schrodinger-Poisson systems.
The initial boundary value problems (IBVP) for the system of compressible adiabatic flow through porous media and the IBVP for its corresponding reduced system through Darcy’ laws on [0, 1] x [0, +] are considered re...The initial boundary value problems (IBVP) for the system of compressible adiabatic flow through porous media and the IBVP for its corresponding reduced system through Darcy’ laws on [0, 1] x [0, +] are considered respectively. The global existence of smooth solutions to the IBVP problems for two systems are proved, and their large-time behavior is analyzed. The time-asymptotic equivalence of these two systems are investigated, the decay rate of the difference of solutions between these two systems are shown to be determined explicitly by the initial perturbations and boundary effects. It is found that the oscillation of the specific volume can be cancelled by that of entropy, i.e., the oscillation of the specific volume and entropy is not required to be small.展开更多
文摘The one-dimensional transient quantum Euler-Poisson system for semiconductors is studied in a bounded interval. The quantum correction can be interpreted as a dispersive regularization of the classical hydrodynamic equations and mechanical effects. The existence and uniqueness of local-in-time solutions are proved with lower regularity and without the restriction on the smallness of velocity, where the pressure-density is general (can be non-convex or non-monotone).
文摘In this paper, we prove the existence and uniqueness of global solutions in H^s(R^3) ( s∈R, s≥0) for the initial value problem of the bipolar Schrodinger-Poisson systems.
基金the MST Grant #1999075107 and the Innovation funds of AMSS, CAS of China.
文摘The initial boundary value problems (IBVP) for the system of compressible adiabatic flow through porous media and the IBVP for its corresponding reduced system through Darcy’ laws on [0, 1] x [0, +] are considered respectively. The global existence of smooth solutions to the IBVP problems for two systems are proved, and their large-time behavior is analyzed. The time-asymptotic equivalence of these two systems are investigated, the decay rate of the difference of solutions between these two systems are shown to be determined explicitly by the initial perturbations and boundary effects. It is found that the oscillation of the specific volume can be cancelled by that of entropy, i.e., the oscillation of the specific volume and entropy is not required to be small.