Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in ter...Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.展开更多
CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and tempe...CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.展开更多
Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the r...Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.展开更多
To accelerate the breeding and selection of Pinus densiflora Siebold and Zucc. resistance to pine wilt disease, a micropropagation system was established and nematode resistance evaluated in vitro. Cotyledon-hypocotyl...To accelerate the breeding and selection of Pinus densiflora Siebold and Zucc. resistance to pine wilt disease, a micropropagation system was established and nematode resistance evaluated in vitro. Cotyledon-hypocotyl explants from 28-day-old seedlings were first cultured on Gresshoff and Doy medium supplemented with 4.0 mg L^(-1) 6-benzyladenine and 0.2 mg L^(-1) a-naphthaleneacetic acid(NAA) to stimulate the formation of buds. Induced buds were subsequently subcultured on Gupta and Durzan medium supplemented with 0.1%(w/v)activated charcoal for elongation. Stem sections derived from shoots were used as explants for the further multiplication. Roots were formed from shoots transferred to woody plant medium containing 0.2 mg L^(-1) NAA for4 weeks. The nematode resistance test showed that symptoms in micropropagated shoots after infection with pine wood nematode(PWN) were similar to those in plants infected in the field. The wilting rate varied from 20 to100% among different clones 18 days after inoculation.The most susceptible clone was Clone 6-4 with a 100%wilting rate, while Clone 8-4 showed a relatively high resistance with a 20% wilting rate. The number of nematodes recovered from Clone 8-4 shoots was significantly lower(P = 0.05) than from Clones 5-10 and 16-4. This work contributes to the breeding of PWN resistance in P.densiflora.展开更多
With the rapid development of unmanned aerial vehicle technology,unmanned aerial vehicles(UAVs)have been widely used in the field of agricultural plant protection.Compared with fuel-driven UAVs,electrically driven rot...With the rapid development of unmanned aerial vehicle technology,unmanned aerial vehicles(UAVs)have been widely used in the field of agricultural plant protection.Compared with fuel-driven UAVs,electrically driven rotorcrafts have many advantages such as lower cost,simpler operation,good maneuverability and cleaner power,which them popular in the plant protection.However,electrical rotorcrafts still face battery problems in actual operation,which limits its working time and application.Aiming at this issue,this paper studied the influence of rotorcraft flight parameters on energy consumption through series of carefully designed flight experiments.First of all,the linear motion experiments have been designed that the rotorcraft was made to perform speed tests and acceleration test with the speed varied from 2∼9 m/s.Secondly,the turning maneuver experiments are carried out under the different circular routes,a rotorcraft was made to conduct successive steering maneuvers at a certain speed of 2 m/s.With the collected tests data,the relation of the energy consumption and the flight dynamic parameter are analyzed through correlation analysis,and the test results of different pairs of experiments have been compared.The research results of this paper would encourage the agricultural rotorcraft to make less maneuvers during operation,which can also provide practical experience and data support for subsequent optimization of flight parameters and reduction of energy consumption.展开更多
In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at t...In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.展开更多
The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-distu...The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.展开更多
Composting is widely applied in animal manure treatment and reclamation. The degradation of organic pollutants during the composting treatment is attributed to two parallel processes: one is the bioprocess induced by ...Composting is widely applied in animal manure treatment and reclamation. The degradation of organic pollutants during the composting treatment is attributed to two parallel processes: one is the bioprocess induced by the used microorganisms, and the other is the chemical process. In order to clarify the relative contribution of the chemical process to the compositing, in this paper, oxytetracycline (OTC) was chosen to study the degradation of tetracyclines (TCs) in water and chicken manure. It was observed that the degradation of OTC in water was much faster than that in chicken mature. At 40°C, 95% of OTC in water could be removed in two days, while it took about one month in mature. By increasing the temperature to 50°C, 60°C and 70°C, the required degradation time (with the degradation efficiency more than 95%) was shortened to 22, 13 and 9 days, respectively. This difference was caused by desorption hysteresis and irreversible fixation due to the formation of complexes of OTC with co-existed metal ions in the matrix. It was found that the coexisted Ca2+, Zn2+ and Ni2+ ions decreased the degradation of OTC, whereas Cu2+ ions promoted the degradation of OTC.展开更多
To determine the optimal embryogenic capacity(somatic embryo production)of the selected elite nematode-resistant genotypes of Pinus thunbergii,variables such as embryogenic tissue(ET)morphology,maternal genotype,proli...To determine the optimal embryogenic capacity(somatic embryo production)of the selected elite nematode-resistant genotypes of Pinus thunbergii,variables such as embryogenic tissue(ET)morphology,maternal genotype,proliferation rate and tissue age were analyzed.ET morphology and histological evaluation of the proliferation stage showed a decrease in filamentous clump and protuberant surfaces and a decline in the acetocarmine-staining area,which indicates a decrease in somatic embryo production(SEP).Variations in cell physiology during the prolifera-tion stage showed that SEP was positively correlated with soluble sugars and proteins,but negatively correlated with starch,peroxidase,and superoxidase.In addition,SEP was significantly(p<0.001)affected by maternal genotype,tis-sue age and proliferation rate.Moreover,SEP was positively correlated with proliferation rate(r=0.98,p<0.001),but negatively correlated with tissue age(r=−0.95,p<0.001).In general,the results suggest that SEP could be assessed in ET proliferation stages by the apparent cell morphology,histology,proliferation rate and tissue age,which provides novel insights for evaluating the ET maturation capacity(number of somatic embryos)during the proliferation stage of P.thunbergii somatic embryogenesis.展开更多
Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation cap...Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation capacity of 200 mAh g^(−1)/217 mAh g^(−1) in the voltage range 1.5–4.0 V vs. K^(+)/K at C/12 rate, suggesting fast kinetics for potassium insertion/deinsertion. However, the capacity quickly fades during cycling, reaching 54 mAh g^(−1) at the 31st cycle. Afterwards, the capacity slowly increases up to 80 mAh g^(−1) at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is elucidated. In operando synchrotron diffraction reveals that V_(2)O_(5) first undergoes a solid solution to form K_(0.6)V_(2)O_(5) phase and then, upon further K ions insertion, it reveals coexistence of a solid solution and a two-phase reaction. During K ions deinsertion, the coexistence of solid solution and the two-phase reaction is identified together with an irreversible process. In operando XAS confirms the reduction/oxidation of vanadium during the K insertion/extraction with some irreversible contributions. This is consistent with the results obtained from synchrotron diffraction, ex situ Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Moreover, ex situ XPS confirms the “cathode electrolyte interphase” (CEI) formation on the electrode and the decomposition of CEI film during cycling.展开更多
The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high ove...The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.展开更多
Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibrati...Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibration is an essential procedure before the IMU is put in use,which is generally used to estimate the error parameters such as the bias,installation error,scale factor of the IMU.Currently,the manual one-by-one calibration is still the mostly used manner,which is low in efficiency,time-consuming,and easy to introduce mis-operation.Aiming at this issue,this paper designs an automatic batch calibration method for a set of IMUs.The designed automatic calibration master controller can control the turntable and the data acquisition system at the same time.Each data acquisition front-end can complete data acquisition of eight IMUs one time.And various scenarios of experimental tests have been carried out to validate the proposed design,such as the multi-position tests,the rate tests and swaying tests.The results illustrate the reliability of each function module and the feasibility automatic batch calibration.Compared with the traditional calibration method,the proposed design can reduce errors caused by the manual calibration and greatly improve the efficiency of IMU calibration.展开更多
The wind as a natural phenomenon would cause the derivation of the pesticide drops during the operation of agricultural unmanned aerial vehicles(UAV).In particular,the changeable wind makes it difficult for the precis...The wind as a natural phenomenon would cause the derivation of the pesticide drops during the operation of agricultural unmanned aerial vehicles(UAV).In particular,the changeable wind makes it difficult for the precision agriculture.For accurate spraying of pesticide,it is necessary to estimate the real-time wind parameters to provide the correction reference for the UAV path.Most estimation algorithms are model based,and as such,serious errors can arise when the models fail to properly fit the physical wind motions.To address this problem,a robust estimation model is proposed in this paper.Considering the diversity of the wind,three elemental time-related Markov models with carefully designed parameterαare adopted in the interacting multiple model(IMM)algorithm,to accomplish the estimation of the wind parameters.Furthermore,the estimation accuracy is dependent as well on the filtering technique.In that regard,the sparse grid quadrature Kalman filter(SGQKF)is employed to comprise the computation load and high filtering accuracy.Finally,the proposed algorithm is ran using simulation tests which results demonstrate its effectiveness and superiority in tracking the wind change.展开更多
A cDNA molecule encoding a major part of the hu-man Norepinephrine transporter(hNET) was synthesized by means of Polymerase Chain Reaction(PCR) technique and used as a probe for selecting the human genomic NET gene. A...A cDNA molecule encoding a major part of the hu-man Norepinephrine transporter(hNET) was synthesized by means of Polymerase Chain Reaction(PCR) technique and used as a probe for selecting the human genomic NET gene. A positive clone harbouring the whole gene was ob-tained from a human lymphocyte genomic library through utilizing the "genomic walking" technique. The clone, des-ignated as phNET, harbours a DNA fragment of about 59 kb in length inserted into BamH Ⅰ site in cosmid pWE15.The genomic clone contains 14 exons encoding all amino acid residues in the protein. A single exon encodes a dis-tinct transmembrane domaill, except for transmembrane domain 10 and 11, which are encoded by part of two ex-ons respectively, and exon 12, which encodes part of do-main 11 and all of domain 12. These results imply that there is a close relationship between exon splicing of a gene and structural domains of the protein, as is the case for the human γ-aminobutyric acid transporter(hGAT) and a number of other membrane proteins.展开更多
At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and ...At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and industrial communities.This work proposes an HHCSRP considering several care centers,where a group of customers(i.e.,patients and the elderly)require being assigned to care centers.Then,various kinds of services are provided by caregivers for customers in different regions.By considering the skill matching,customers’appointment time,and caregivers’workload balancing,this article formulates an optimization model with multiple objectives to achieve minimal service cost and minimal delay cost.To handle it,we then introduce a brain storm optimization method with particular multi-objective search mechanisms(MOBSO)via combining with the features of the investigated HHCSRP.Moreover,we perform experiments to test the effectiveness of the designed method.Via comparing the MOBSO with two excellent optimizers,the results confirm that the developed method has significant superiority in addressing the considered HHCSRP.展开更多
基金supported by the National Natural Science Foundation of China(22162012 and 22202089)the Youth Jinggang Scholars Program in Jiangxi Province([2019]57)+6 种基金the Thousand Talents Plan of Jiangxi Province(jxsq2019201083)the Natural Science Foundation of Jiangxi Province for Distinguished Young Scholars(20224ACB213005)the Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology(JXUSTQJBJ2019002)the Research Foundation of Education Bureau of Jiangxi Province of China(GJJ210833)the Foundation of State Key Laboratory of Physical Chemistry of Solid Surfaces(202022)the China Postdoctoral Science Foundation(2021M693893)the Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry(20212BCD42018)。
文摘Direct methanol fuel cells(DMFC) are widely considered to be an ideal green energy conversion device but their widespread applications are limited by the high price of the Pt-based catalysts and the instability in terms of surface CO toxicity in long-term operation.Herein,the PtFe alloy nanoparticles(NPs) with small particle size(~4.12 nm) supported on carbon black catalysts with different Pt/Fe atomic ratios(Pt_(1)Fe_(2)/C,Pt_(3)Fe_(4)/C,Pt_(1)Fe_(1)/C,and Pt_(2)Fe_(1)/C) are successfully prepared for enhanced anti-CO poisoning during methanol oxidation reaction(MOR).The optimal atomic ratio of Pt/Fe for the MOR is 1:2,and the mass activity of Pt_(1)Fe_(2)/C(5.40 A mg_(Pt)^(-1)) is 13.5 times higher than that of conventional commercial Pt/C(Pt/C-JM)(0.40 A mg_(Pt)^(-1)).The introduction of Fe into the Pt lattice forms the PtFe alloy phase,and the electron density of Pt is reduced after forming the PtFe alloy.In-situ Fourier transform infrared results indicate that the addition of oxyphilic metal Fe has reduced the adsorption of reactant molecules on Pt during the MOR.The doping of Fe atoms helps to desorb toxic intermediates and regenerate Pt active sites,promoting the cleavage of C-O bonds with good selectivity of CO_(2)(58.1%).Moreover,the Pt_(1)Fe_(2)/C catalyst exhibits higher CO tolerance,methanol electrooxidation activity,and long-term stability than other Pt_(x)Fe_(y)/C catalysts.
基金supported by the National Natural Science Foundation of China(21567008,21607064,21707055,21763011)Program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology+2 种基金Program of 5511 Talents in Scientific Technological Innovation of Jiangxi Province(20165BCB18014)Academic and Technical Leaders of the Main Disciplines in Jiangxi Province(20172BCB22018)Jiangxi Province Natural Science Foundation China(20161BAB203090,20161BAB213083,20171ACB21041)~~
文摘CaMg(CO3)2microspheres were prepared and used as hard templates to fabricate a series of CaMg(CO3)2@Ag2CO3composite microspheres via a fast and low‐cost ion exchange process.The effects of ion exchange time and temperature on the physicochemical properties and photocatalytic activities of the composite microspheres were studied through photocatalytic degradation of Acid Orange II under xenon lamp irradiation.The obtained samples were analyzed by X‐ray diffraction,scanning electron microscopy,Fourier transform infrared spectroscopy,UV‐vis diffuse reflectance spectroscopy,N2physical adsorption,and photocurrent tests.The CaMg(CO3)2@Ag2CO3sample with the highest activity was obtained with an ion exchange time of4h and temperature of40°C.The degradation rate of Acid Orange II by this sample reached83.3%after15min of light irradiation,and the sample also performed well in phenol degradation.The CaMg(CO3)2@Ag2CO3produced under these ion exchange conditions showed a well‐ordered hierarchical morphology with small particle sizes,which was beneficial to light absorption and the transfer of photoelectrons(e-)and holes(h+)to the catalyst surface.Moreover,the separation of photogenerated carriers over the composites was greatly improved relative to bare CaMg(CO3)2.Despite the very low content of Ag2CO3(2.56%),excellent photocatalytic performance was obtained over the CaMg(CO3)2@Ag2CO3microspheres.
基金supported by the National Natural Science Foundation of China(41425019,41661144016,91537214)the Public Science and Technology Research Funds Projects of the Ocean(201505013)
文摘Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat(SH) over the central and eastern Tibetan Plateau(CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH.During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature.Cloud–radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.
基金funded by the Special Research Program for Forestry Sectors Beneficial to Public,State Forestry Administration,China(Grant No.201204501)the Science and Technology Support Program of Jiangsu Province(BE2014405)+1 种基金the Key University Science Research Project of Jiangsu Province(15KJA220003)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘To accelerate the breeding and selection of Pinus densiflora Siebold and Zucc. resistance to pine wilt disease, a micropropagation system was established and nematode resistance evaluated in vitro. Cotyledon-hypocotyl explants from 28-day-old seedlings were first cultured on Gresshoff and Doy medium supplemented with 4.0 mg L^(-1) 6-benzyladenine and 0.2 mg L^(-1) a-naphthaleneacetic acid(NAA) to stimulate the formation of buds. Induced buds were subsequently subcultured on Gupta and Durzan medium supplemented with 0.1%(w/v)activated charcoal for elongation. Stem sections derived from shoots were used as explants for the further multiplication. Roots were formed from shoots transferred to woody plant medium containing 0.2 mg L^(-1) NAA for4 weeks. The nematode resistance test showed that symptoms in micropropagated shoots after infection with pine wood nematode(PWN) were similar to those in plants infected in the field. The wilting rate varied from 20 to100% among different clones 18 days after inoculation.The most susceptible clone was Clone 6-4 with a 100%wilting rate, while Clone 8-4 showed a relatively high resistance with a 20% wilting rate. The number of nematodes recovered from Clone 8-4 shoots was significantly lower(P = 0.05) than from Clones 5-10 and 16-4. This work contributes to the breeding of PWN resistance in P.densiflora.
基金This work was supported by the National Natural Science Foundation of China(No.61803203)。
文摘With the rapid development of unmanned aerial vehicle technology,unmanned aerial vehicles(UAVs)have been widely used in the field of agricultural plant protection.Compared with fuel-driven UAVs,electrically driven rotorcrafts have many advantages such as lower cost,simpler operation,good maneuverability and cleaner power,which them popular in the plant protection.However,electrical rotorcrafts still face battery problems in actual operation,which limits its working time and application.Aiming at this issue,this paper studied the influence of rotorcraft flight parameters on energy consumption through series of carefully designed flight experiments.First of all,the linear motion experiments have been designed that the rotorcraft was made to perform speed tests and acceleration test with the speed varied from 2∼9 m/s.Secondly,the turning maneuver experiments are carried out under the different circular routes,a rotorcraft was made to conduct successive steering maneuvers at a certain speed of 2 m/s.With the collected tests data,the relation of the energy consumption and the flight dynamic parameter are analyzed through correlation analysis,and the test results of different pairs of experiments have been compared.The research results of this paper would encourage the agricultural rotorcraft to make less maneuvers during operation,which can also provide practical experience and data support for subsequent optimization of flight parameters and reduction of energy consumption.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘In nowadays society,the safety of the elderly population is becoming a pressing concern,especially for those who live alone.There might be daily risks such as accidental falling or treatment attack on them.Aiming at these problems,indoor positioning could be a critical way to monitor their states.With the rapidly development of the imaging techniques,wearable and portable cameras are very popular,which could be set on human individual.And in view of the advantages of the visual positioning,the authors propose a binocular visual positioning algorithm to real-timely locate the elderly indoor.In this paper,the imaging model has been established with the corrected image data from the binocular camera;then feature extraction has been completed to provide reference to adjacent image matching based on the binary robust independent elementary feature(BRIEF)descriptor,finally the camera movement and the states of the elderly have been estimated to distinguish their falling risk.In the experiments,the real-sense D435i sensors were adopted as the binocular cameras to obtain indoor images,and three experimental scenarios have been carried out to test the proposed method.The results show that the proposed algorithm can effectively locate the elderly indoor and improve the real-time monitoring capability.
基金This work is supported by National Natural Science Foundation of China,No.61803203and the Fundamental Research Funds for the Central Universities,No.30918011305.
文摘The performance of the transfer alignment has great impact on inertial navigation systems.As the transfer alignment is generally implemented using a filter to compensate the errors,its accuracy,rapidity and anti-disturbance capability are key properties to evaluate the filtering process.In terms of the superiority in dealing with the noise,H∞filtering has been used to improve the anti-disturbance capability of the transfer alignment.However,there is still a need to incorporate system uncertainty due to various dynamic conditions.Based on the structural value theory,a robustness stability analysis method has been proposed for the transfer alignment to evaluate the impact of uncertainty on the navigation system.The mathematical derivation has been elaborated in this paper,and the simulation has been carried out to verify the effectiveness of the algorithm.
文摘Composting is widely applied in animal manure treatment and reclamation. The degradation of organic pollutants during the composting treatment is attributed to two parallel processes: one is the bioprocess induced by the used microorganisms, and the other is the chemical process. In order to clarify the relative contribution of the chemical process to the compositing, in this paper, oxytetracycline (OTC) was chosen to study the degradation of tetracyclines (TCs) in water and chicken manure. It was observed that the degradation of OTC in water was much faster than that in chicken mature. At 40°C, 95% of OTC in water could be removed in two days, while it took about one month in mature. By increasing the temperature to 50°C, 60°C and 70°C, the required degradation time (with the degradation efficiency more than 95%) was shortened to 22, 13 and 9 days, respectively. This difference was caused by desorption hysteresis and irreversible fixation due to the formation of complexes of OTC with co-existed metal ions in the matrix. It was found that the coexisted Ca2+, Zn2+ and Ni2+ ions decreased the degradation of OTC, whereas Cu2+ ions promoted the degradation of OTC.
基金The work was supported by the National Key Research and Development Projects(2018YFD0600203,2017YFD0600104)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Doctorate Fellowship Foundation of Nanjing Forestry University.
文摘To determine the optimal embryogenic capacity(somatic embryo production)of the selected elite nematode-resistant genotypes of Pinus thunbergii,variables such as embryogenic tissue(ET)morphology,maternal genotype,proliferation rate and tissue age were analyzed.ET morphology and histological evaluation of the proliferation stage showed a decrease in filamentous clump and protuberant surfaces and a decline in the acetocarmine-staining area,which indicates a decrease in somatic embryo production(SEP).Variations in cell physiology during the prolifera-tion stage showed that SEP was positively correlated with soluble sugars and proteins,but negatively correlated with starch,peroxidase,and superoxidase.In addition,SEP was significantly(p<0.001)affected by maternal genotype,tis-sue age and proliferation rate.Moreover,SEP was positively correlated with proliferation rate(r=0.98,p<0.001),but negatively correlated with tissue age(r=−0.95,p<0.001).In general,the results suggest that SEP could be assessed in ET proliferation stages by the apparent cell morphology,histology,proliferation rate and tissue age,which provides novel insights for evaluating the ET maturation capacity(number of somatic embryos)during the proliferation stage of P.thunbergii somatic embryogenesis.
基金This work contributes to the research performed at CELEST(Center for Electrochemical Energy Storage Ulm-Karlsruhe)and was funded by the German Research Foundation(DFG)under Project ID 390874152(POLiS Cluster of Excellence)Our research work has gained benefit from beamtime allocation(2017092405-qfu)at BL04-MSPD at ALBA Synchrotron,Barcelona,Spain and(I-20170977)at PETRA-III beamline P65 at DESY,Hamburg,Germany.The in operando XAS work was performed by using the Biologic potentiostat of PETRA-Ⅲ beamline P02.1.We thank Dr.Francois Fauth from Experiments Division at ALBA for his technical help during synchrotron diffraction measurement.We appreciate Dr.Anna-Lena Hansen(IAM-ESS)for the helpful discussion regarding to the crystal sturcture of V_(2)O_(5).Dr.Kristina Pfeifer(IAM-ESS),Dr.Noha Sabi(IAM-ESS),and Dr.Thomas Bergfeldt(IAM-AWP)are gratefully acknowledged for SEM/EDX,FTIR,and ICP-OES measurements,respectively.The TEM characterization was carried out at the Karlsruhe Nano Micro Facility(KNMF),a Helmholtz research infrastructure operated at the KIT.
文摘Herein, the electrochemical performance and the mechanism of potassium insertion/deinsertion in orthorhombic V_(2)O_(5) nanoparticles are studied. The V2O5 electrode displays an initial potassiation/depotassiation capacity of 200 mAh g^(−1)/217 mAh g^(−1) in the voltage range 1.5–4.0 V vs. K^(+)/K at C/12 rate, suggesting fast kinetics for potassium insertion/deinsertion. However, the capacity quickly fades during cycling, reaching 54 mAh g^(−1) at the 31st cycle. Afterwards, the capacity slowly increases up to 80 mAh g^(−1) at the 200th cycle. The storage mechanism upon K ions insertion into V2O5 is elucidated. In operando synchrotron diffraction reveals that V_(2)O_(5) first undergoes a solid solution to form K_(0.6)V_(2)O_(5) phase and then, upon further K ions insertion, it reveals coexistence of a solid solution and a two-phase reaction. During K ions deinsertion, the coexistence of solid solution and the two-phase reaction is identified together with an irreversible process. In operando XAS confirms the reduction/oxidation of vanadium during the K insertion/extraction with some irreversible contributions. This is consistent with the results obtained from synchrotron diffraction, ex situ Raman, X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). Moreover, ex situ XPS confirms the “cathode electrolyte interphase” (CEI) formation on the electrode and the decomposition of CEI film during cycling.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘The internal structure of the inertial measurement unit(IMU)in active state is easily damaged in the high overload environment.So that the IMU is usually required to be powered within the disappearance of the high overload.In this paper,a mechanical switch is designed to enable the IMU based on the analysis of the impact of high overload on the power-supply circuit.In which,parameters of mechanical switch are determined through theoretical calculation and data analysis.The innovation of the proposed structure lies in that the mechanical switch is triggered through the high overload process and could provide a delay signal for the circuit.After all,the proposed switch is tested through mechanical simulation,impact test and practical test.The experimental results show that the designed mechanical switch can effectively and reliably provide the delay for the circuit and guarantee operation of the IMU under high overload.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘Thanks to its light weight,low power consumption,and low price,the inertial measurement units(IMUs)have been widely used in civil and military applications such as autopilot,robotics,and tactical weapons.The calibration is an essential procedure before the IMU is put in use,which is generally used to estimate the error parameters such as the bias,installation error,scale factor of the IMU.Currently,the manual one-by-one calibration is still the mostly used manner,which is low in efficiency,time-consuming,and easy to introduce mis-operation.Aiming at this issue,this paper designs an automatic batch calibration method for a set of IMUs.The designed automatic calibration master controller can control the turntable and the data acquisition system at the same time.Each data acquisition front-end can complete data acquisition of eight IMUs one time.And various scenarios of experimental tests have been carried out to validate the proposed design,such as the multi-position tests,the rate tests and swaying tests.The results illustrate the reliability of each function module and the feasibility automatic batch calibration.Compared with the traditional calibration method,the proposed design can reduce errors caused by the manual calibration and greatly improve the efficiency of IMU calibration.
基金This work was supported by the National Natural Science Foundation of China(No.61803203).
文摘The wind as a natural phenomenon would cause the derivation of the pesticide drops during the operation of agricultural unmanned aerial vehicles(UAV).In particular,the changeable wind makes it difficult for the precision agriculture.For accurate spraying of pesticide,it is necessary to estimate the real-time wind parameters to provide the correction reference for the UAV path.Most estimation algorithms are model based,and as such,serious errors can arise when the models fail to properly fit the physical wind motions.To address this problem,a robust estimation model is proposed in this paper.Considering the diversity of the wind,three elemental time-related Markov models with carefully designed parameterαare adopted in the interacting multiple model(IMM)algorithm,to accomplish the estimation of the wind parameters.Furthermore,the estimation accuracy is dependent as well on the filtering technique.In that regard,the sparse grid quadrature Kalman filter(SGQKF)is employed to comprise the computation load and high filtering accuracy.Finally,the proposed algorithm is ran using simulation tests which results demonstrate its effectiveness and superiority in tracking the wind change.
文摘A cDNA molecule encoding a major part of the hu-man Norepinephrine transporter(hNET) was synthesized by means of Polymerase Chain Reaction(PCR) technique and used as a probe for selecting the human genomic NET gene. A positive clone harbouring the whole gene was ob-tained from a human lymphocyte genomic library through utilizing the "genomic walking" technique. The clone, des-ignated as phNET, harbours a DNA fragment of about 59 kb in length inserted into BamH Ⅰ site in cosmid pWE15.The genomic clone contains 14 exons encoding all amino acid residues in the protein. A single exon encodes a dis-tinct transmembrane domaill, except for transmembrane domain 10 and 11, which are encoded by part of two ex-ons respectively, and exon 12, which encodes part of do-main 11 and all of domain 12. These results imply that there is a close relationship between exon splicing of a gene and structural domains of the protein, as is the case for the human γ-aminobutyric acid transporter(hGAT) and a number of other membrane proteins.
基金supported in part by the National Natural Science Foundation of China(Nos.62173356 and 61703320)the Science and Technology Development Fund(FDCT),Macao SAR(No.0019/2021/A)+3 种基金Shandong Province Outstanding Youth Innovation Team Project of Colleges and Universities(No.2020RWG011)Natural Science Foundation of Shandong Province(No.ZR202111110025)China Postdoctoral Science Foundation Funded Project(No.2019T120569)the Zhuhai Industry-University-Research Project with Hongkong and Macao(No.ZH22017002210014PWC).
文摘At present,home health care(HHC)has been accepted as an effective method for handling the healthcare problems of the elderly.The HHC scheduling and routing problem(HHCSRP)attracts wide concentration from academia and industrial communities.This work proposes an HHCSRP considering several care centers,where a group of customers(i.e.,patients and the elderly)require being assigned to care centers.Then,various kinds of services are provided by caregivers for customers in different regions.By considering the skill matching,customers’appointment time,and caregivers’workload balancing,this article formulates an optimization model with multiple objectives to achieve minimal service cost and minimal delay cost.To handle it,we then introduce a brain storm optimization method with particular multi-objective search mechanisms(MOBSO)via combining with the features of the investigated HHCSRP.Moreover,we perform experiments to test the effectiveness of the designed method.Via comparing the MOBSO with two excellent optimizers,the results confirm that the developed method has significant superiority in addressing the considered HHCSRP.