The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled ...The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.展开更多
The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading...The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.展开更多
基金supported by the National Basic Research Program of China[grant number 2014CB953901],support from the National Basic Research Program of China[grant number 2015CB453200]the National Natural Science Foundation of China[grant numbers 41675096,41575043,41375095,and 41505067],the National Natural Science Foundation of China[grant numbers 41475084 and 41630423]
文摘The effects of air-sea coupling over the tropical Indian Ocean(TIO) on the eastward propagating boreal winter intraseasonal oscillation(MJO) are investigated by comparing a fully coupled and a partially decoupled Indian Ocean experiment using the SINTEX-F coupled model.Air-sea coupling over the TIO significantly enhances the intensity of the eastward propagations of the MJO along the5°-10°S zonal areas.The zonal asymmetry of the SST anomaly(SSTA) is responsible for the enhanced eastward propagation.A positive SSTA appears to the east of the MJO convection,which results in the boundary layer moisture convergence and positively feeds back to the MJO convection.In addition,the air-sea interaction effect on the eastward propagation of the MJO is related to the interannual variations of the TIO.Air-sea coupling enhances(reduces) the eastward-propagating spectrum during the negative Indian Ocean dipole mode and positive Indian Ocean basin mode.Such phase dependence is attributed to the role of the background mean westerly in affecting the wind-evaporation-SST feedback.Air-sea coupling(decoupling) enhances(reduces) the zonal asymmetry of the low-level specific humidity,and thus the eastward propagation spectrum of the MJO.
基金Guangdong Basic and Applied Basic Research Foundation(2019A1515011808)Science and Technology Planning Program of Guangdong Province(2021B1212020016)。
文摘The impact of sea surface temperature(SST)on winter haze in Guangdong province(WHDGD)was analyzed on the interannual scale.It was pointed out that the northern Indian Ocean and the northwest Pacific SST play a leading role in the variation of WHDGD.Cold(warm)SST anomalies over the northern Indian Ocean and the Northwest Pacific stimulate the eastward propagation of cold(warm)Kelvin waves through the Gill forced response,causing Ekman convergence(divergence)in the western Pacific,inducing abnormal cyclonic(anticyclonic)circulation.It excites the positive(negative)Western Pacific teleconnection pattern(WP),which results in the temperature and the precipitation decrease(increase)in Guangdong and forms the meteorological variables conditions that are conducive(not conducive)to the formation of haze.ENSO has an asymmetric influence on WHDGD.In El Niño(La Niña)winters,there are strong(weak)coordinated variations between the northern Indian Ocean,the northwest Pacific,and the eastern Pacific,which stimulate the negative(positive)phase of WP teleconnection.In El Niño winters,the enhanced moisture is attributed to the joint effects of the horizontal advection from the surrounding ocean,vertical advection from the moisture convergence,and the increased atmospheric apparent moisture sink(Q2)from soil evaporation.The weakening of the atmospheric apparent heat source(Q1)in the upper layer is not conducive to the formation of inversion stratification.In contrast,in La Niña winters,the reduced moisture is attributed to the reduced upward water vapor transport and Q2 loss.Due to the Q1 increase in the upper layer,the temperature inversion forms and suppresses the diffusion of haze.