Matrigel is routinely used as a coating material in the feeder-free culture system of human embryonic stem cells (hESCs). However, matrigel is costive and inconvenient to use. In this study, the possibility of using g...Matrigel is routinely used as a coating material in the feeder-free culture system of human embryonic stem cells (hESCs). However, matrigel is costive and inconvenient to use. In this study, the possibility of using gelatin as an alternative coating material was investigated. The results showed that, after trypsinization, hESCs were maintained undifferentiated on gelatin. These hESCs expressed pluripotent markers, formed teratoma and maintained a normal karyotype. As measured at passage 10, the hESCs expressed a high level of Oct4 on both gelatin and Matrigel. hESCs growing on gelatin formed AP-positive colonies in similar size and number to those growing on Matrigel (P > 0.05). Moreover, hESCs growing on gelatin contained a comparable percentage of SSEA-4-positive cells to those growing on Matrigel (95.1% vs.94.3%, P > 0.05). H-1 hESCs were maintained undifferentiated on gelatin for 20 passages and remained the stable normal karyotype. This gelatin-based culture protocol may allow us to propagate hESCs in large scale, with less cost.展开更多
基金Supported by the National Key Basic Research and Development of China (Grant Nos. 2006CB943603 and 2006CB503905)International Collaboration, the Ministry of Science and Technology of China (Grant No. 20070192)
文摘Matrigel is routinely used as a coating material in the feeder-free culture system of human embryonic stem cells (hESCs). However, matrigel is costive and inconvenient to use. In this study, the possibility of using gelatin as an alternative coating material was investigated. The results showed that, after trypsinization, hESCs were maintained undifferentiated on gelatin. These hESCs expressed pluripotent markers, formed teratoma and maintained a normal karyotype. As measured at passage 10, the hESCs expressed a high level of Oct4 on both gelatin and Matrigel. hESCs growing on gelatin formed AP-positive colonies in similar size and number to those growing on Matrigel (P > 0.05). Moreover, hESCs growing on gelatin contained a comparable percentage of SSEA-4-positive cells to those growing on Matrigel (95.1% vs.94.3%, P > 0.05). H-1 hESCs were maintained undifferentiated on gelatin for 20 passages and remained the stable normal karyotype. This gelatin-based culture protocol may allow us to propagate hESCs in large scale, with less cost.