Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking an...Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking and aggregation issues.Herein,metal-organic framework(MOF-808)is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle,which could effectively inhibit COF stacking and aggregation.The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored.The complementary utilization ofπ-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects.The resulting PSCs achieve an impressive power conversion efficiency of 23.61%with superior open circuit voltage(1.20 V)and maintained approximately 90%of the original power conversion efficiency after 2000 h(30-50%RH and 25-30℃).Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles,the amount of lead leakage from unpackaged PSCs soaked in water(<5 ppm)satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.展开更多
The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic ...The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic and human activities.Using newly developed spatial big data and adopting the methods of multi-indicator measurement and spatial analysis methods,we analyzed the pattern of urban vitality in Chongqing,a provincial city in western China and,on this basis,evaluated the creation and maintenance of urban vitality from the economic and human activities perspective.Our findings indicate that the impacts of economic and human activities are positive and significant.Among the three intensity and diversity indicators,economic intensity and population density show an effect on urban vitality stronger than that of economic diversity.However,economic diversity has the strongest superposition or interactive effect,and is thus an important foundation dynamic.The positive effect of population density on urban vitality is largely a result of Chongqing’s jobs-housing balance.The case of Chongqing highlights the importance of topographic features,historical inheritance,large-scale migration,and cultural activities in shaping the distinctive vitality pattern of a city.This study contends that the creation and maintenance of urban vitality can not be fully explained without incorporating the impacts of economic and human activities.It contributes to a comprehensive measurement of urban vitality and enriches its connotations.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal...Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.展开更多
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ...Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.展开更多
基金supported by the National Natural Science Foundation of China(22072034,and 22001050)the China Postdoctoral Science Foundation(2022M710949,2020T130147,and 2020M681084)+2 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z22106,and LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002)Education Department of Heilongjiang Province(LJYXL2022-038).
文摘Although covalent organic frameworks(COFs)with highπ-conjugation have recently exhibited great prospects in perovskite solar cells(PSCs),their further application in PSCs is still hindered by face-to-face stacking and aggregation issues.Herein,metal-organic framework(MOF-808)is selected as an ideal platform for the in situ homogeneous growth of a COF to construct a core-shell MOF@COF nanoparticle,which could effectively inhibit COF stacking and aggregation.The synergistic intrinsic mechanisms induced by the MOF@COF nanoparticles for reinforcing intrinsic stability and mitigating lead leakage in PSCs have been explored.The complementary utilization ofπ-conjugated skeletons and nanopores could optimize the crystallization of large-grained perovskite films and eliminate defects.The resulting PSCs achieve an impressive power conversion efficiency of 23.61%with superior open circuit voltage(1.20 V)and maintained approximately 90%of the original power conversion efficiency after 2000 h(30-50%RH and 25-30℃).Benefiting from the synergistic effects of the in situ chemical fixation and adsorption abilities of the MOF@COF nanoparticles,the amount of lead leakage from unpackaged PSCs soaked in water(<5 ppm)satisfies the laboratory assessment required for the Resource Conservation and Recovery Act Regulation.
基金Under the auspices of the National Natural Science Foundation of China(No.42071178,41671139)。
文摘The literature on urban vitality tends to focus on the built environment.This paper argues that some important processes in shaping vitality may be overlooked without examining the intensity and diversity of economic and human activities.Using newly developed spatial big data and adopting the methods of multi-indicator measurement and spatial analysis methods,we analyzed the pattern of urban vitality in Chongqing,a provincial city in western China and,on this basis,evaluated the creation and maintenance of urban vitality from the economic and human activities perspective.Our findings indicate that the impacts of economic and human activities are positive and significant.Among the three intensity and diversity indicators,economic intensity and population density show an effect on urban vitality stronger than that of economic diversity.However,economic diversity has the strongest superposition or interactive effect,and is thus an important foundation dynamic.The positive effect of population density on urban vitality is largely a result of Chongqing’s jobs-housing balance.The case of Chongqing highlights the importance of topographic features,historical inheritance,large-scale migration,and cultural activities in shaping the distinctive vitality pattern of a city.This study contends that the creation and maintenance of urban vitality can not be fully explained without incorporating the impacts of economic and human activities.It contributes to a comprehensive measurement of urban vitality and enriches its connotations.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
基金supported by the National Natural Science Foundation of China(22072034,22001050,and 21873025)the China Postdoctoral Science Foundation(2020T130147,2020M681084,and 2022M710949)+1 种基金the Postdoctoral Foundation of Heilongjiang Province(LBH-Z19059)the Natural Science Foundation of Heilongjiang Youth Fund(YQ2021B002).
文摘Deep-level defects and random oriented configuration in perovskite crystallization process would cause the nonradiative recombination and further affect the performance of perovskite solar cells(PSCs).Herein,two metal-organic frameworks(MOFs)with tunable Lewis-base passivation sites have been constructed(Cd-Httb and Cd-Httb-BDC,Httb=5-(4-(1H-1,2,4-triazole-1-yl)benzyl)-1h-tetrazole,BDC=1,4-dicarboxybenzene)to eliminate deep-level defects and simultaneously as nanostructured heterogeneous nucleation seed to assist the growth of large-grained perovskite films.Compared with the control and Cd-Httb,Cd-Httb-BDC designed with mix-ligands strategy exhibited the enhanced inducted effect on the crystallization and nucleation of high-quality perovskite films during annealing process.Consequently,the resultant Cd-Httb-BDC-modified device achieved higher power conversion efficiency(PCE)(22.18%)than the control(20.89%)and Cd-Httb(21.56%).Meanwhile,the unencapsulated Cd-Httb-BDC-modified device still maintained 90%of initial PCE after 1500 h in ambient conditions and exhibited enhanced thermal stability(85℃ in N_(2) atmosphere).This work presented a successful example of mixligands strategy on construction of high-quality MOF-assisted perovskite films for high-efficient and stable PSCs.
基金The research was supported by the National Natural Science Foundation of China(Grant Nos.41731288 and 41972299)the Science and Technology Research and Development Program of China Railway(Grant No.P2018G050)+1 种基金the Young Top-Notch Talent Project of National“Ten Thousands Talent Program”(Grant No.2019YJ300)the Major Scientific Research and Development Project of China Academy of Railway Sciences Corporation Limited(Grant No.2019YJ026).
文摘Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil.