A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity bindi...A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.展开更多
利用判断矩阵法、线性加权求和法、GIS(地理信息系统,Geographic Information System)空间分析法和层次聚类分析法,基于地形数据、气候数据和土壤数据等11个指标,进行陕西省蓝莓生长的潜在适生区划研究。结果表明:1)陕西省具有大面积适...利用判断矩阵法、线性加权求和法、GIS(地理信息系统,Geographic Information System)空间分析法和层次聚类分析法,基于地形数据、气候数据和土壤数据等11个指标,进行陕西省蓝莓生长的潜在适生区划研究。结果表明:1)陕西省具有大面积适宜蓝莓生长的立地条件,潜在适生区占总面积的88.56%。气候条件和土壤条件对其潜在分布区的限制作用较强,潜在适生区面积分别占总面积的39.54%和33.06%;2)从综合评价指标体系来看,陕西省蓝莓潜在适生区面积达到10.12×10~4 km^2,占总面积的49.16%,主要集中在陕南浅山丘陵区和秦岭北麓山前区;3)运用层次聚类分析法,将潜在适生区分为3个亚区,非适生区分为2个亚区。其中,潜在适生区第1亚区具有较好的蓝莓适种条件,非适生区第2亚区的蓝莓种植条件最不理想。展开更多
Two dinucleotide PNA-cyclen copper(II) complexes with α-PNA (P1) and classical PNA (P2) backbones were synthesized and characterized.The interactions between title complexes and DNA were investigated under physiologi...Two dinucleotide PNA-cyclen copper(II) complexes with α-PNA (P1) and classical PNA (P2) backbones were synthesized and characterized.The interactions between title complexes and DNA were investigated under physiological conditions.Fluorescence studies indicate that the binding ability of complex P1 to CT-DNA is as twice as that of P2.DNA melting experiments were also carried out and the results show that ΔTm caused by P1 is higher than that caused by P2.Agarose gel electrophoresis experiments demonstrate that P1 is an excellent chemical nuclease,which can cleavage plasmid DNA completely in 12 h.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20725206 and 20732004)Specialized Research Fund for the Doctoral Program of Higher EducationScientific Fund of Sichuan Province for Outstanding Young Scientist
文摘A novel cyclen-based linear polyamine (POGEC) was designed and synthesized from the reaction between 1,3-propanediol diglycidyl ether and 1,7-bis(diethoxyphosphory)-1,4,7,10-tetraazacyclod-odecane. High-affinity binding between POGEC and DNA was demonstrated by agarose gel electrophoresis and scanning electron microscopy (SEM). Moreover,the formed POGEC/DNA complex (termed polyplex) could be disassociated to release the free DNA through addition of the physiological concentration of NaCl solution. Fluorescence spectrum was used to measure the high-affinity binding and DNA condensation capability of POGEC. Circular dichroism (CD) spectrum indicates that the DNA conformation did not change after binding to POEGC.
文摘利用判断矩阵法、线性加权求和法、GIS(地理信息系统,Geographic Information System)空间分析法和层次聚类分析法,基于地形数据、气候数据和土壤数据等11个指标,进行陕西省蓝莓生长的潜在适生区划研究。结果表明:1)陕西省具有大面积适宜蓝莓生长的立地条件,潜在适生区占总面积的88.56%。气候条件和土壤条件对其潜在分布区的限制作用较强,潜在适生区面积分别占总面积的39.54%和33.06%;2)从综合评价指标体系来看,陕西省蓝莓潜在适生区面积达到10.12×10~4 km^2,占总面积的49.16%,主要集中在陕南浅山丘陵区和秦岭北麓山前区;3)运用层次聚类分析法,将潜在适生区分为3个亚区,非适生区分为2个亚区。其中,潜在适生区第1亚区具有较好的蓝莓适种条件,非适生区第2亚区的蓝莓种植条件最不理想。
基金financially supported by the National Natural Science Foundation of China (20725206, 20732004 & 20902062)Program for Changjiang Scholars and Innovative Research Team in University, the Key Project of Chinese Ministry of Education in China and Scientific Fund of Sichuan Province for Outstanding Young Scientists
文摘Two dinucleotide PNA-cyclen copper(II) complexes with α-PNA (P1) and classical PNA (P2) backbones were synthesized and characterized.The interactions between title complexes and DNA were investigated under physiological conditions.Fluorescence studies indicate that the binding ability of complex P1 to CT-DNA is as twice as that of P2.DNA melting experiments were also carried out and the results show that ΔTm caused by P1 is higher than that caused by P2.Agarose gel electrophoresis experiments demonstrate that P1 is an excellent chemical nuclease,which can cleavage plasmid DNA completely in 12 h.