The climatology and interannual variability of sea surface salinity (SSS) and freshwater flux (FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth S...The climatology and interannual variability of sea surface salinity (SSS) and freshwater flux (FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model (BNU-ESM). The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth (MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature (SST) in the equatorial Pacific is identified. As a response to El Nino-Southern Oscillation (ENSO), the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Nino, a positive FWF anomaly in the western-central Pacific (an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated E1 Nino is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.展开更多
使用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)开发的第三代气候海洋模式(LASG/IAP Climate system Ocean Model version 3,LICOM3.0)低分辨率版本在海洋模式比较计划(Ocean Model Intercompari...使用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)开发的第三代气候海洋模式(LASG/IAP Climate system Ocean Model version 3,LICOM3.0)低分辨率版本在海洋模式比较计划(Ocean Model Intercomparison Project,OMIP)试验中的模拟数据,描述了南极绕极流(Antarctic Circumpolar Current,ACC)和南大洋经向翻转环流(Meridional Overturning Circulation,MOC)在1958-2009年的平均状态及其变化,并与已有的模式模拟结果和观测结果对比以评估LICOM模式的模拟效果.通过对比已有模式模拟数据发现,LICOM3.0模式模拟的ACC和南大洋MOC在两组OMIP试验中平均状态相仿、结果在合理范围内,但OMIP1试验中海表强迫的变化趋势较OMIP2试验中的变化更大,得到的环流输送在OMIP1试验中增长趋势也更大.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.41376039,41376019,and 41475101)the NSFC–Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)+4 种基金the NSFC Innovative Group Grant(Project No.41421005)the IOCAS[Institute of Oceanology,Chinese Academy of Sciences(CAS)]through the CAS Strategic Priority Project[Western Pacific Ocean System(WPOS)]supported by the Joint Center for Global Change Studies(Project No.105019)the Key Laboratory of Meteorological Disaster of Ministry of Education,NUIST(Nanjing University of Information Science&Technology)(Grant No.KLME 1311)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions
文摘The climatology and interannual variability of sea surface salinity (SSS) and freshwater flux (FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model (BNU-ESM). The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth (MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature (SST) in the equatorial Pacific is identified. As a response to El Nino-Southern Oscillation (ENSO), the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Nino, a positive FWF anomaly in the western-central Pacific (an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated E1 Nino is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.
文摘使用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)开发的第三代气候海洋模式(LASG/IAP Climate system Ocean Model version 3,LICOM3.0)低分辨率版本在海洋模式比较计划(Ocean Model Intercomparison Project,OMIP)试验中的模拟数据,描述了南极绕极流(Antarctic Circumpolar Current,ACC)和南大洋经向翻转环流(Meridional Overturning Circulation,MOC)在1958-2009年的平均状态及其变化,并与已有的模式模拟结果和观测结果对比以评估LICOM模式的模拟效果.通过对比已有模式模拟数据发现,LICOM3.0模式模拟的ACC和南大洋MOC在两组OMIP试验中平均状态相仿、结果在合理范围内,但OMIP1试验中海表强迫的变化趋势较OMIP2试验中的变化更大,得到的环流输送在OMIP1试验中增长趋势也更大.