Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a sig...Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a significantly large sample is established to evaluate mean and root mean square (rms) velocities of the flow. Due to the presence of concentration gradient, the established sample for the solid phase involves more data from the lower part of the sampling bin than from the upper part. The concentration effect causes bias errors in the measured mean and rms velocities when velocity varies across the bin. These bias errors are analyti- cally quantified in this study based on simplified linear velocity and concentration distributions. Typical bulk flow characteristics from sediment-laden flow measurements are used to demonstrate rough estimation of the error magnitude. Results indicate that the mean velocity is underestimated while the rms velocity is overestimated in the ensemble-averaged measurement. The extent of devia- tion is commensurate with the bin size and the rate of concentration gradient. Procedures are proposed to assist determining an appro- priate sampling bin size in certain error limits.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50779023)
文摘Sediment-laden flow measurement with Particle Tracking Velocimetry (PTV) introduces a series of finite-sized sampling bins along the vertical of the flow. Instantaneous velocities are collected at each bin and a significantly large sample is established to evaluate mean and root mean square (rms) velocities of the flow. Due to the presence of concentration gradient, the established sample for the solid phase involves more data from the lower part of the sampling bin than from the upper part. The concentration effect causes bias errors in the measured mean and rms velocities when velocity varies across the bin. These bias errors are analyti- cally quantified in this study based on simplified linear velocity and concentration distributions. Typical bulk flow characteristics from sediment-laden flow measurements are used to demonstrate rough estimation of the error magnitude. Results indicate that the mean velocity is underestimated while the rms velocity is overestimated in the ensemble-averaged measurement. The extent of devia- tion is commensurate with the bin size and the rate of concentration gradient. Procedures are proposed to assist determining an appro- priate sampling bin size in certain error limits.