The influence of local landforms on ground motion is an important problem. The antiplane response of a scalene triangular hill to incident SH waves is studied in this paper by using a complex function, moving coordina...The influence of local landforms on ground motion is an important problem. The antiplane response of a scalene triangular hill to incident SH waves is studied in this paper by using a complex function, moving coordinates and auxiliary functions. First, the model is divided into two domains: a scalene triangular hill with a semi-circular bottom; and a half space with a semi-circular canyon. Wave functions that satisfy the zero-stress condition at the triangular wedges and at the horizontal surface are constructed in both domains. Then, considering the displacement continuity and stress equilibrium, algebraic equations are established. Finally, numerical examples are provided to illustrate the influence of the geometry of the hill and the characteristics of the incident waves on the ground motions.展开更多
Accuracy of coeffcient A_(isp) is related to the reference phase chosen during analysis. The cri- terion of choosing reference phase which may minimize the error of A_(isp) was deduced. The optimum results could be ob...Accuracy of coeffcient A_(isp) is related to the reference phase chosen during analysis. The cri- terion of choosing reference phase which may minimize the error of A_(isp) was deduced. The optimum results could be obtained by using the method of least squares if the number of sam- pies for analysis is more than the phase in samples. The procedure presented here is satisfacto- ryfor ordinary phase analysis.展开更多
文摘The influence of local landforms on ground motion is an important problem. The antiplane response of a scalene triangular hill to incident SH waves is studied in this paper by using a complex function, moving coordinates and auxiliary functions. First, the model is divided into two domains: a scalene triangular hill with a semi-circular bottom; and a half space with a semi-circular canyon. Wave functions that satisfy the zero-stress condition at the triangular wedges and at the horizontal surface are constructed in both domains. Then, considering the displacement continuity and stress equilibrium, algebraic equations are established. Finally, numerical examples are provided to illustrate the influence of the geometry of the hill and the characteristics of the incident waves on the ground motions.
文摘Accuracy of coeffcient A_(isp) is related to the reference phase chosen during analysis. The cri- terion of choosing reference phase which may minimize the error of A_(isp) was deduced. The optimum results could be obtained by using the method of least squares if the number of sam- pies for analysis is more than the phase in samples. The procedure presented here is satisfacto- ryfor ordinary phase analysis.