Two new families of finite binary sequences are constructed using multiplicative inverse. The sequences are shown to have strong pseudorandom properties by using some estimates of certain exponential sums over finite ...Two new families of finite binary sequences are constructed using multiplicative inverse. The sequences are shown to have strong pseudorandom properties by using some estimates of certain exponential sums over finite fields. The constructions can be implemented fast since multiplicative inverse over finite fields can be computed in polynomial time.展开更多
Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n...Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs.展开更多
基金Supported by the Open Funds of Key Lab of Fujian Province University Network Security and Cryptology (07B005)the Funds of the Education Department of Fujian Province (JA07164)the Natural Science Foundation of Fujian Province of China (2007F3086)
文摘Two new families of finite binary sequences are constructed using multiplicative inverse. The sequences are shown to have strong pseudorandom properties by using some estimates of certain exponential sums over finite fields. The constructions can be implemented fast since multiplicative inverse over finite fields can be computed in polynomial time.
基金Supported by the National Natural Science Foundation of China(No.61170246)the Program for New Century Excellent Talents in Fujian Province University of China(No.JK2010047)the Open Funds of State Key Laboratory of Information Security (Chinese Academy of Sciences)(No.01-01-1)
文摘Let ε : y^2 = x3 + Ax + B be an elliptic curve defined over the finite field Zp(p 〉 3) and G be a rational point of prime order N on ε. Define a subset of ZN, the residue class ring modulo N, asS:={n:n∈ZN,n≠0,(X(nG)/p)=1} where X(nG) denotes the x-axis of the rational points nC and (*/P) is the Legendre symbol. Some explicit results on quasi-randomness of S are investigated. The construction depends on the intrinsic group structures of elliptic curves and character sums along elliptic curves play an important role in the proofs.