Holocene basaltic rocks of the Jingpohu area are located in the “Crater Forest” and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, the...Holocene basaltic rocks of the Jingpohu area are located in the “Crater Forest” and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, their petrological characteristics are very different: alkaline olivine basalt without any megacrysts in the former, and leucite tephrite with Ti-amphibole, phlogopite and anorthoclasite megacrysts in the latter. On the basis of their geochemical characteristics, the two types of basaltic rocks should belong to weakly sodian alkaline basalts. But leucite tephrite is characterized by higher Al2O3, Na2O and K2O, higher enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), lower MgO and CaO, compatible elements and moderately compatible elements and lower Mg*values and Na/K ratios in comparison with alkaline olivine basalt. However, the two types of basaltic rocks have similar Sr, Nd, Pb isotopic compositions, which suggests that the mantle beneath the Jingpohu area was homogeneous before undergoing some geological processes about 3490 years ago. As the activity of the mantle plume led to different degrees of metasomatism, extreme mantle source heterogeneities occurred beneath the Jingpohu area. In comparison with alkaline olivine basalt, the leucite tephrite was derived from the more enriched mantle source region and resulted from strong metasomatism.展开更多
The tensile creep behavior of extruded Mg-6 Gd alloy,having the tensile yield strength of~ 110 MPa at 175 ℃,has been investigated under 175 ℃ and 150 MPa. In this study, the extruded Mg-6 Gd sample exhibits the tot...The tensile creep behavior of extruded Mg-6 Gd alloy,having the tensile yield strength of~ 110 MPa at 175 ℃,has been investigated under 175 ℃ and 150 MPa. In this study, the extruded Mg-6 Gd sample exhibits the total tensile strain of ~10.5% after the creep time of 1100 h,and the fast plastic strain of ~4.6% at the beginning of the creep test. The microstructure result suggests that the dislocation deformation is the main deformation mode during creep, and the grains with orientation close to(0001) II ED disappear after creep. The creep process containing a low creep strain has no effective promotion for the precipitation compared with the aging process without strain. The origination of creep crack is related to the formation of precipitate-free zone during creep. The work offers an important implication to research the microstructure evolution under an applied stress in a weak aging response Mg alloy.展开更多
文摘Holocene basaltic rocks of the Jingpohu area are located in the “Crater Forest” and Hamatang districts to the northwest of the Jingpohu Lake. Although there is only a distance of 15 km between the two districts, their petrological characteristics are very different: alkaline olivine basalt without any megacrysts in the former, and leucite tephrite with Ti-amphibole, phlogopite and anorthoclasite megacrysts in the latter. On the basis of their geochemical characteristics, the two types of basaltic rocks should belong to weakly sodian alkaline basalts. But leucite tephrite is characterized by higher Al2O3, Na2O and K2O, higher enrichment in light rare earth elements (LREE) and large ion lithophile elements (LILE), lower MgO and CaO, compatible elements and moderately compatible elements and lower Mg*values and Na/K ratios in comparison with alkaline olivine basalt. However, the two types of basaltic rocks have similar Sr, Nd, Pb isotopic compositions, which suggests that the mantle beneath the Jingpohu area was homogeneous before undergoing some geological processes about 3490 years ago. As the activity of the mantle plume led to different degrees of metasomatism, extreme mantle source heterogeneities occurred beneath the Jingpohu area. In comparison with alkaline olivine basalt, the leucite tephrite was derived from the more enriched mantle source region and resulted from strong metasomatism.
基金supported by the National Natural Science Foundation of China(Grant Nos.51201158 and51871069)Natural Science Foundation of Liaoning Province of China(20180550299 and 20180551117)+4 种基金the Natural Science Foundation of Heilongjiang Province of China(E2017030)the Science Research Project of Liaoning Province Education Department(Grant Nos.L2016004 and LQ2017014)the Liaoning Province Doctor Startup Fund(Grant No.20170520390)the Fundamental Research Funds for the Central Universities(Grant No.HEUCFM181002)the Shenyang Science and Technology Plan Projects(Grant No.F16-228-6-00)
文摘The tensile creep behavior of extruded Mg-6 Gd alloy,having the tensile yield strength of~ 110 MPa at 175 ℃,has been investigated under 175 ℃ and 150 MPa. In this study, the extruded Mg-6 Gd sample exhibits the total tensile strain of ~10.5% after the creep time of 1100 h,and the fast plastic strain of ~4.6% at the beginning of the creep test. The microstructure result suggests that the dislocation deformation is the main deformation mode during creep, and the grains with orientation close to(0001) II ED disappear after creep. The creep process containing a low creep strain has no effective promotion for the precipitation compared with the aging process without strain. The origination of creep crack is related to the formation of precipitate-free zone during creep. The work offers an important implication to research the microstructure evolution under an applied stress in a weak aging response Mg alloy.