An experimental study and computer simulation on non-equilibriumgrain-boundary segregation kinetics and the critical time for phosphorus in 12CrlMoV steel (which isused in steam pipeline of ships) are put forward in t...An experimental study and computer simulation on non-equilibriumgrain-boundary segregation kinetics and the critical time for phosphorus in 12CrlMoV steel (which isused in steam pipeline of ships) are put forward in this paper. The segregation level ofphosphorus with solution temperature 1 050 ℃ at the isothermal holding temperature of 5401 , havebeen measured at grain-boundaries. A non-equilibrium grain-boundary segregation kinetics curve ofphosphorus is given. The critical time for phosphorus non-equilibrium grain-boundary segregation isabout 500h at 540 ℃ for the experimental steel. When the holding time is longer than 1 500 h ,non-equilibrium segregation disappears and the level of segregation reaches full equilibrium. Thesimulation using the kinetic equations of non-equilibrium grain-boundary segregation is in goodaccordance with the experimental observation for phosphorus in steel 12Crl MoV. The non-equilibriumgrain-boundary segregation kinetic model is therefore proved.展开更多
文摘An experimental study and computer simulation on non-equilibriumgrain-boundary segregation kinetics and the critical time for phosphorus in 12CrlMoV steel (which isused in steam pipeline of ships) are put forward in this paper. The segregation level ofphosphorus with solution temperature 1 050 ℃ at the isothermal holding temperature of 5401 , havebeen measured at grain-boundaries. A non-equilibrium grain-boundary segregation kinetics curve ofphosphorus is given. The critical time for phosphorus non-equilibrium grain-boundary segregation isabout 500h at 540 ℃ for the experimental steel. When the holding time is longer than 1 500 h ,non-equilibrium segregation disappears and the level of segregation reaches full equilibrium. Thesimulation using the kinetic equations of non-equilibrium grain-boundary segregation is in goodaccordance with the experimental observation for phosphorus in steel 12Crl MoV. The non-equilibriumgrain-boundary segregation kinetic model is therefore proved.