The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-...The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.展开更多
Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate struct...Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.展开更多
文摘The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2015AA042101)
文摘Complex engineered systems are often difficult to analyze and design due to the tangled interdependencies among their subsystems and components. Conventional design methods often need exact modeling or accurate structure decomposition, which limits their practical application. The rapid expansion of data makes utilizing data to guide and improve system design indispensable in practical engineering. In this paper, a data driven uncertainty evaluation approach is proposed to support the design of complex engineered systems. The core of the approach is a data-mining based uncertainty evaluation method that predicts the uncertainty level of a specific system design by means of analyzing association relations along different system attributes and synthesizing the information entropy of the covered attribute areas, and a quantitative measure of system uncertainty can be obtained accordingly. Monte Carlo simulation is introduced to get the uncertainty extrema, and the possible data distributions under different situations is discussed in detail The uncertainty values can be normalized using the simulation results and the values can be used to evaluate different system designs. A prototype system is established, and two case studies have been carded out. The case of an inverted pendulum system validates the effectiveness of the proposed method, and the case of an oil sump design shows the practicability when two or more design plans need to be compared. This research can be used to evaluate the uncertainty of complex engineered systems completely relying on data, and is ideally suited for plan selection and performance analysis in system design.