Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory ...Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.展开更多
Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on...Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.展开更多
基金supported by the China Postdoctoral Science Foundation (no. 2020M670599)
文摘Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.
基金supported by the National Key Research and Development Program (No. 2016YFC0303401)the National Natural Science Foundation of China (No. 51779236)the National Natural Science Foundation of China–Shandong Joint Fund Project (No. U1706226)。
文摘Jacket-type offshore platforms are widely used for oil, gas field, and energy development in shallow water. The design of a jacket structure is highly dependent on target environmental variables. This study focuses on a strategy to estimate design loads for offshore jacket structures based on an environmental contour approach. In addition to the popular conditional distribution model, various classes of bivariate copulas are adopted to construct joint distributions of environmental variables. Analytical formulations of environmental contours based on various models are presented and discussed in this study. The design loads are examined by dynamic response analysis of jacket platform. Results suggest that the conditional model is not recommended for use in estimating design loads in sampling locations due to poor fitting results. Independent copula produces conservative design loads and the extreme response obtained using the conditional model are smaller than those determined by copulas. The suitability of a model for contour construction varies with the origin of wave data. This study provides a reference for the design load estimation of jacket structures and offers an alternative procedure to determine the design criteria for offshore structures.