CH4 and N2O fluxes from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China were measured for one year using closed static chamber technique and gas chromatography method. Three treatments wer...CH4 and N2O fluxes from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China were measured for one year using closed static chamber technique and gas chromatography method. Three treatments were set in the studied field: (A) litter-free, (B) with litter, and (C) with litter and seedling. The results showed that the soil in our study was a sink of atmospheric CH4 and source of atmospheric N2O. The observed mean CH4 fluxes from treatments A, B, and C were -50.0 ± 4.0, -35.9 ± 2.8, -31.6 ± 2.8 μgC/(m^2·h), respectively, and calculated annual fluxes in 2003 were -4.1, -3.1, and -2.9 kgC/hm^2, respectively. The observed mean N2O fluxes from treatments A, B, and C were 30.9 ± 3.1, 28.2 ± 3.5, 50.2±3.7 μgN/(m^2·h), respectively, and calculated annual fluxes in 2003 were 2.8, 2.6, and 3.7 kgN/hm^2, respectively. Seasonal variations in CH4 and N2O fluxes were significant among all the three treatments. The presence of litter decreased CH4 uptake during wet season (P 〈 0.05), but not during dry season. There was a similar increase in seedlings-mediated N2O emissions during wet and dry seasons, indicating that seedlings increased N2O emission in both seasons. A strong positive relationship existed between CH4 fluxes and soil moisture for all the three treatments, and weak relationship between CH4 fluxes and soil temperature for treatment B and treatment C. The N2O fluxes correlated with soil temperature for all the three treatments.展开更多
The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn re...The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m^-2 d^-1 and 0.66 MJ m-2 d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely ou global solar radiation could be of more extensive use.展开更多
The Chinese Sun Hazemeter Network (CSHNET) provides the necessary ground-based observation to validate and assess the applicability of MODIS aerosol optical depth (AOD) products over different ecological and geographi...The Chinese Sun Hazemeter Network (CSHNET) provides the necessary ground-based observation to validate and assess the applicability of MODIS aerosol optical depth (AOD) products over different ecological and geographic regions in China for the first time. The validation results show that the comprehensive utilization ratio and applicability of MODIS products varied very much over different regions and seasons from August 2004 to July 2005. On the Tibetan Plateau, the comprehensive utili- zation ratio of MODIS data was low: MODIS products only accounted for 16% of the ground-based observation; on average, 31% to 45% of MODIS products fell within the retrieval errors issued by NASA. A similar result was found in northern desert areas with the ratio of MODIS to observation ranging from 15% to 55%, with 7% to 39% of MODIS products within errors. In the remote northeast corner of China, low ratios of MODIS to observation were also found ranging from 14% to 46%, with 49% to 69% of MODIS within errors. The forested sites exhibited moderate ratios of MODIS to observation ranging from 46% to 65%, with 30% to 59% of MODIS within errors. This was similar to numbers observed at sites along eastern seashore of China and inland urban sites with the ratio of MODIS to observation between 63% to 75%, with 25% to 67% of MODIS within errors for sites along eastern seashore of China and 43% to 78%, with 35% to 75% of MODIS within errors for inland urban sites. The ratio of MODIS to observation over agricultural areas ranged from 61% to 89%; 59%-88% of MODIS fell within the retrieval errors. At homogeneous and well vegetated areas, the comprehensive utilization ratio of MODIS products was over 80% and above 70% of MODIS products fell within the retrieval errors in growing season.展开更多
文摘CH4 and N2O fluxes from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China were measured for one year using closed static chamber technique and gas chromatography method. Three treatments were set in the studied field: (A) litter-free, (B) with litter, and (C) with litter and seedling. The results showed that the soil in our study was a sink of atmospheric CH4 and source of atmospheric N2O. The observed mean CH4 fluxes from treatments A, B, and C were -50.0 ± 4.0, -35.9 ± 2.8, -31.6 ± 2.8 μgC/(m^2·h), respectively, and calculated annual fluxes in 2003 were -4.1, -3.1, and -2.9 kgC/hm^2, respectively. The observed mean N2O fluxes from treatments A, B, and C were 30.9 ± 3.1, 28.2 ± 3.5, 50.2±3.7 μgN/(m^2·h), respectively, and calculated annual fluxes in 2003 were 2.8, 2.6, and 3.7 kgN/hm^2, respectively. Seasonal variations in CH4 and N2O fluxes were significant among all the three treatments. The presence of litter decreased CH4 uptake during wet season (P 〈 0.05), but not during dry season. There was a similar increase in seedlings-mediated N2O emissions during wet and dry seasons, indicating that seedlings increased N2O emission in both seasons. A strong positive relationship existed between CH4 fluxes and soil moisture for all the three treatments, and weak relationship between CH4 fluxes and soil temperature for treatment B and treatment C. The N2O fluxes correlated with soil temperature for all the three treatments.
基金supported by the Research Program for excellent Ph.D. dissertations in the Chinese Academy of Science
文摘The characteristics of net radiation (Rn) (0.3-10 μm) in Lhasa and Haibei in the Tibetan Plateau were analyzed based on long-term in-situ measurements of surface radiation data. The monthly average of daily Rn reached a minimum during the winter period followed by an increase until May and then a decline until January. This variation is consistent with solar activity. The annual mean daily total Rn values were 0.92 MJ m^-2 d^-1 and 0.66 MJ m-2 d-1 in Lhasa and Haibei, respectively. A relationship between Rn and broadband solar radiation (Rs) was demonstrated by a good linear correlation at the two sites. Rn can be an accurate estimate from Rs. The estimated Rn values were similar to the observed values, and the relative deviations between the estimates and measurements of Rn were 2.8% and 3.8% in Lhasa and Haibei, respectively. The application of the Rn estimating model to other locations showed that it could provide acceptable estimated Rn values from the Rs data. Furthermore, we analyzed the influence of clouds on Rn by different clear index (Ks), defined as the ratio of Rs to the extraterrestrial solar irradiance on a horizontal surface. The results indicate that more accurate results are associated with increased cloudy conditions. The influence of the albedo was also considered, but its inclusion in the model resulted in only a slight improvement. Because surface albedo is not usually measured, an expression based solely ou global solar radiation could be of more extensive use.
基金Supported by the National Natural Science Foundation of China (Grants Nos. 40675073, 40525016 and 40520120071)the National Basic Research Program (973) of China (Grant No. 2007CB407303)
文摘The Chinese Sun Hazemeter Network (CSHNET) provides the necessary ground-based observation to validate and assess the applicability of MODIS aerosol optical depth (AOD) products over different ecological and geographic regions in China for the first time. The validation results show that the comprehensive utilization ratio and applicability of MODIS products varied very much over different regions and seasons from August 2004 to July 2005. On the Tibetan Plateau, the comprehensive utili- zation ratio of MODIS data was low: MODIS products only accounted for 16% of the ground-based observation; on average, 31% to 45% of MODIS products fell within the retrieval errors issued by NASA. A similar result was found in northern desert areas with the ratio of MODIS to observation ranging from 15% to 55%, with 7% to 39% of MODIS products within errors. In the remote northeast corner of China, low ratios of MODIS to observation were also found ranging from 14% to 46%, with 49% to 69% of MODIS within errors. The forested sites exhibited moderate ratios of MODIS to observation ranging from 46% to 65%, with 30% to 59% of MODIS within errors. This was similar to numbers observed at sites along eastern seashore of China and inland urban sites with the ratio of MODIS to observation between 63% to 75%, with 25% to 67% of MODIS within errors for sites along eastern seashore of China and 43% to 78%, with 35% to 75% of MODIS within errors for inland urban sites. The ratio of MODIS to observation over agricultural areas ranged from 61% to 89%; 59%-88% of MODIS fell within the retrieval errors. At homogeneous and well vegetated areas, the comprehensive utilization ratio of MODIS products was over 80% and above 70% of MODIS products fell within the retrieval errors in growing season.