Thick gas electron multipliers (THGEMs) are new types of gas detectors with merits such as a high counting rate,anti-radiation,high gain,robustness and relatively low cost.We establish an up-down THGEM detector hodosc...Thick gas electron multipliers (THGEMs) are new types of gas detectors with merits such as a high counting rate,anti-radiation,high gain,robustness and relatively low cost.We establish an up-down THGEM detector hodoscope system for detecting and displaying muon tracks.Muon tracks can be well observed with the detectors and the present study lays an important technological foundation for the domestic and mass production of THGEMs.展开更多
The working stability of thinner-thick gaseous electron multipliers (THGEMs), which have been developed by the University of the Chinese Academy of Sciences and the Second Academy of China's Aerospace Science and I...The working stability of thinner-thick gaseous electron multipliers (THGEMs), which have been developed by the University of the Chinese Academy of Sciences and the Second Academy of China's Aerospace Science and Industry Corporation, is studied with an 8 keV x-ray on a Cu target. Gains of about 103–104 are achieved with a single board in Ar:iC4H10 (97:3). Environmental factors, such as pressure, temperature and humidity are considered. The thinner-THGEMs are shown to perform stably over two months of studies.展开更多
The gas gain and energy resolution of single and double THGEM detectors (5 cm×5 cm effective area) with mini-rims (rim less than 10 um) were studied. The maximum gain was found to reach 5×103 and 2 ×...The gas gain and energy resolution of single and double THGEM detectors (5 cm×5 cm effective area) with mini-rims (rim less than 10 um) were studied. The maximum gain was found to reach 5×103 and 2 × 105 for single and double THGEMs respectively, while the energy resolution for 5.9 keV X-rays varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses. Different combinations were also investigated of noble gases (argon, neon) mixed with a quantity of other gases (isobutane, methane) at atmospheric pressure.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 10775181 and 10775151.
文摘Thick gas electron multipliers (THGEMs) are new types of gas detectors with merits such as a high counting rate,anti-radiation,high gain,robustness and relatively low cost.We establish an up-down THGEM detector hodoscope system for detecting and displaying muon tracks.Muon tracks can be well observed with the detectors and the present study lays an important technological foundation for the domestic and mass production of THGEMs.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11205240 and 11265003, and the China Postdoctoral Science Foundation under Grant No 2012M510587.
文摘The working stability of thinner-thick gaseous electron multipliers (THGEMs), which have been developed by the University of the Chinese Academy of Sciences and the Second Academy of China's Aerospace Science and Industry Corporation, is studied with an 8 keV x-ray on a Cu target. Gains of about 103–104 are achieved with a single board in Ar:iC4H10 (97:3). Environmental factors, such as pressure, temperature and humidity are considered. The thinner-THGEMs are shown to perform stably over two months of studies.
基金Supported by Youth Fund of Institute of High Energy PhysicsChinese Academy of Sciences and National Natural Science Foundation of China (10775151)
文摘The gas gain and energy resolution of single and double THGEM detectors (5 cm×5 cm effective area) with mini-rims (rim less than 10 um) were studied. The maximum gain was found to reach 5×103 and 2 × 105 for single and double THGEMs respectively, while the energy resolution for 5.9 keV X-rays varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses. Different combinations were also investigated of noble gases (argon, neon) mixed with a quantity of other gases (isobutane, methane) at atmospheric pressure.