采用WRF(Weather Research and Forecasting)模式4种边界层参数化方案对青藏高原那曲地区边界层特征进行了数值模拟,并利用"第三次青藏高原大气科学试验"在青藏高原那曲地区5个站点的观测资料对模拟结果进行验证,分析不同参...采用WRF(Weather Research and Forecasting)模式4种边界层参数化方案对青藏高原那曲地区边界层特征进行了数值模拟,并利用"第三次青藏高原大气科学试验"在青藏高原那曲地区5个站点的观测资料对模拟结果进行验证,分析不同参数化方案在那曲地区的适用性。研究表明,YSU、MYJ、ACM2和BouLac方案对2 m气温和地表温度的模拟偏低。BouLac方案模拟的地表温度偏差较小。通过对能量平衡各分量的对比分析发现,温度模拟偏低可能是向下长波辐射模拟偏低以及感热通量和潜热通量交换过强导致的。对于边界层风、位温和相对湿度垂直结构的模拟,局地方案的模拟效果均优于非局地方案。BouLac方案对那曲地区近地层温度、边界层内位温和相对湿度的垂直分布模拟效果较好。展开更多
本文利用中尺度模式WRF(weather research and forecasting)模拟了2016年干季和湿季高黎贡山南段(腾冲—保山地区)山谷风环流,分析YSU、MYJ、MYNN3、ACM2和BouLac五种边界层参数化方案在高黎贡山复杂下垫面的适用性。研究结果表明YSU方...本文利用中尺度模式WRF(weather research and forecasting)模拟了2016年干季和湿季高黎贡山南段(腾冲—保山地区)山谷风环流,分析YSU、MYJ、MYNN3、ACM2和BouLac五种边界层参数化方案在高黎贡山复杂下垫面的适用性。研究结果表明YSU方案对温度模拟的效果最好;ACM2模拟的风速平均绝对误差最小;MYNN3方案模拟的风向绝对误差最小,YSU方案和MYJ方案模拟的风向日变化趋势与观测更加一致。高黎贡山南段地区上午09时(北京时,下同)出现谷风环流,夜间19时转为山风环流。白天多为偏南风,夜间为偏北风和偏西风。白天山顶气流辐合而山谷气流辐散,夜间相反。白天风速大于夜间。干季西风风力较弱,有利于低层局地环流的发展;而湿季受较强的偏东背景风影响时,局地环流的发展受到抑制,边界层高度也就低于干季。干季西风遇到高黎贡山,在西坡下沉并形成涡旋,西侧湍流混合充分,边界层高度高;湿季偏东风使高黎贡山西侧谷风减弱,腾冲与保山的边界层高度相差不大。展开更多
The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance ...The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.展开更多
三七Notoginseng Radix et Rhizoma为五加科人参属的多年生草本植物,在我国已有近400多年的栽培历史。内生菌作为三七生态系统中的重要生物因素,在三七生长过程中具有重要作用。三七内生菌群结构类型丰富,次生代谢产物多样,且具有促进...三七Notoginseng Radix et Rhizoma为五加科人参属的多年生草本植物,在我国已有近400多年的栽培历史。内生菌作为三七生态系统中的重要生物因素,在三七生长过程中具有重要作用。三七内生菌群结构类型丰富,次生代谢产物多样,且具有促进三七生长发育、提高抗性、诱导代谢产物合成或转化等作用,有望用于缓解三七连作障碍和提升三七品质等。通过对三七内生菌群的多样性、功能及应用、及其对三七代谢的影响等进行综述,为三七内生菌资源的有效利用提供参考。展开更多
Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic rough...Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic roughness length,bulk transfer coefficients,etc.,were investigated using the EC data in 2012.The characteristics of turbulence fluxes over the lake including momentum flux,sensible heat flux,latent heat flux,and CO2 flux,and their controlling factors were analyzed.The total annual evaporation of the lake was also estimated based on the artificial neural network(ANN) gap-filling technique.Results showed that the total annual evaporation in 2012 was 1165 ± 15 mm,which was larger than the annual precipitation(818 mm).Local circulation between the lake and the surrounding land was found to be significant throughout the year due to the land-lake breeze or the mountain-valley breeze in this area.The prevailing winds of southeasterly and northwesterly were observed throughout the year.The sensible heat flux over this plateau lake usually had a few tens of W m-2,and generally became negative in the afternoon,indicating that heat was transferred from the lake to the atmosphere.The sensible heat flux was governed by the lake-air temperature difference and had its maximum in the early morning.The diurnal variation of the latent heat flux was controlled by vapor pressure deficit with a peak in the afternoon.The latent heat flux was dominant in the partition of available energy in daytime over this lake.The lake acted as a weak CO2 source to the atmosphere except for the midday of summer.Seasonal variations of surface albedo over the lake were related to the solar elevation angle and opacity of the water.Furthermore,compared with the observation data,the surface albedo estimated by CLM4-LISSS model was underestimated in winter and overestimated in summer.展开更多
Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteor...Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteorological profile observation data were used to analyze characteristics of these parameters on the diurnal, seasonal, and annual scales. Significant seasonal and annual variations of the aerodynamic roughness length are observed over the two surfaces. A large variation of kB-1 is measured during the day. Both kB-1 and the bulk transfer coefficients exhibit significant seasonal and annual variations. During the growing season (May to October), average Cd and Ch are 3.1×10-3 and 2.5×10-3 over the degrade grassland surface, and 4.7×10-3 and 3.1×10-3 over the cropland surface respectively. During the non-growing season, average Cd and Ch are 2.3×10-3 and 2.0×10-3 over the degrade grassland surface, and 2.9×10-3 and 2.2×10-3 over the cropland surface respectively.展开更多
文摘采用WRF(Weather Research and Forecasting)模式4种边界层参数化方案对青藏高原那曲地区边界层特征进行了数值模拟,并利用"第三次青藏高原大气科学试验"在青藏高原那曲地区5个站点的观测资料对模拟结果进行验证,分析不同参数化方案在那曲地区的适用性。研究表明,YSU、MYJ、ACM2和BouLac方案对2 m气温和地表温度的模拟偏低。BouLac方案模拟的地表温度偏差较小。通过对能量平衡各分量的对比分析发现,温度模拟偏低可能是向下长波辐射模拟偏低以及感热通量和潜热通量交换过强导致的。对于边界层风、位温和相对湿度垂直结构的模拟,局地方案的模拟效果均优于非局地方案。BouLac方案对那曲地区近地层温度、边界层内位温和相对湿度的垂直分布模拟效果较好。
文摘本文利用中尺度模式WRF(weather research and forecasting)模拟了2016年干季和湿季高黎贡山南段(腾冲—保山地区)山谷风环流,分析YSU、MYJ、MYNN3、ACM2和BouLac五种边界层参数化方案在高黎贡山复杂下垫面的适用性。研究结果表明YSU方案对温度模拟的效果最好;ACM2模拟的风速平均绝对误差最小;MYNN3方案模拟的风向绝对误差最小,YSU方案和MYJ方案模拟的风向日变化趋势与观测更加一致。高黎贡山南段地区上午09时(北京时,下同)出现谷风环流,夜间19时转为山风环流。白天多为偏南风,夜间为偏北风和偏西风。白天山顶气流辐合而山谷气流辐散,夜间相反。白天风速大于夜间。干季西风风力较弱,有利于低层局地环流的发展;而湿季受较强的偏东背景风影响时,局地环流的发展受到抑制,边界层高度也就低于干季。干季西风遇到高黎贡山,在西坡下沉并形成涡旋,西侧湍流混合充分,边界层高度高;湿季偏东风使高黎贡山西侧谷风减弱,腾冲与保山的边界层高度相差不大。
基金supported by the National Key Research and Development Program of China (No. 2017YFC1502101)National Natural Science Foundation of China (Nos. 91537212 and 41775018)。
文摘The stratification of the atmospheric surface layer(ASL)plays an important role in regulating the water vapor and heat exchange across the lake–air interface.Based on one year of data measured by the eddy covariance technique over Erhai Lake in 2015,the ASL stability(ζ)was divided into six ranges,including unstable(-1ζ<-0:1),weakly unstable(-0:1ζ<-0:01),near-neutral1(-0:01ζ<0),near-neutral2(0ζ<0:01),weakly stable(0:01ζ<0:1),and stable(0:1ζ<1).The characteristics of ASL stability conditions and factors controlling the latent(LE)and sensible heat(H)fluxes under different stability conditions were analyzed in this study.The stability conditions of Erhai Lake have noticeably seasonal and diurnal variation,with the nearneutral and(weakly)stable stratification usually occurring before July,with frequencies of 51.7%and 23.3%,respectively,but most of the(weakly)unstable stratification was observed after July,with a frequency of 59.8%.Large evaporation occurred even in stable atmospheric conditions,due to the coupled effects of the relatively larger lake–air vapor pressure difference and wind speed.The relative controls of LE and H by different atmospheric variables are largely dependent on the stability conditions.In stable and unstable ranges,LE is closely correlated with the vapor pressure difference,whereas in weakly unstable to weakly stable ranges,it is primarily controlled by wind speed.H is related to wind speed and the lake–air temperature difference under stable conditions,but shows no obvious relationship under unstable conditions.
文摘三七Notoginseng Radix et Rhizoma为五加科人参属的多年生草本植物,在我国已有近400多年的栽培历史。内生菌作为三七生态系统中的重要生物因素,在三七生长过程中具有重要作用。三七内生菌群结构类型丰富,次生代谢产物多样,且具有促进三七生长发育、提高抗性、诱导代谢产物合成或转化等作用,有望用于缓解三七连作障碍和提升三七品质等。通过对三七内生菌群的多样性、功能及应用、及其对三七代谢的影响等进行综述,为三七内生菌资源的有效利用提供参考。
基金supported by the National Natural Science Foundation of China(Grant Nos.41030106,41021004)the National Basic Research Program of China(Grant No.2010CB951801)
文摘Measurement of turbulence fluxes were performed over the Erhai Lake using eddy covariance(EC) method.Basic physical parameters in the lake-air interaction processes,such as surface albedo of the lake,aerodynamic roughness length,bulk transfer coefficients,etc.,were investigated using the EC data in 2012.The characteristics of turbulence fluxes over the lake including momentum flux,sensible heat flux,latent heat flux,and CO2 flux,and their controlling factors were analyzed.The total annual evaporation of the lake was also estimated based on the artificial neural network(ANN) gap-filling technique.Results showed that the total annual evaporation in 2012 was 1165 ± 15 mm,which was larger than the annual precipitation(818 mm).Local circulation between the lake and the surrounding land was found to be significant throughout the year due to the land-lake breeze or the mountain-valley breeze in this area.The prevailing winds of southeasterly and northwesterly were observed throughout the year.The sensible heat flux over this plateau lake usually had a few tens of W m-2,and generally became negative in the afternoon,indicating that heat was transferred from the lake to the atmosphere.The sensible heat flux was governed by the lake-air temperature difference and had its maximum in the early morning.The diurnal variation of the latent heat flux was controlled by vapor pressure deficit with a peak in the afternoon.The latent heat flux was dominant in the partition of available energy in daytime over this lake.The lake acted as a weak CO2 source to the atmosphere except for the midday of summer.Seasonal variations of surface albedo over the lake were related to the solar elevation angle and opacity of the water.Furthermore,compared with the observation data,the surface albedo estimated by CLM4-LISSS model was underestimated in winter and overestimated in summer.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB951801 and 2006CB400500)
文摘Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteorological profile observation data were used to analyze characteristics of these parameters on the diurnal, seasonal, and annual scales. Significant seasonal and annual variations of the aerodynamic roughness length are observed over the two surfaces. A large variation of kB-1 is measured during the day. Both kB-1 and the bulk transfer coefficients exhibit significant seasonal and annual variations. During the growing season (May to October), average Cd and Ch are 3.1×10-3 and 2.5×10-3 over the degrade grassland surface, and 4.7×10-3 and 3.1×10-3 over the cropland surface respectively. During the non-growing season, average Cd and Ch are 2.3×10-3 and 2.0×10-3 over the degrade grassland surface, and 2.9×10-3 and 2.2×10-3 over the cropland surface respectively.