Axisymmetric dual reciprocity boundary element method (DRBEM) with augmented items is extended to simulate the heat and mass transfer problems in the vertical Bridgman method (VBM) crystal growth of HgCdTe and CdZnTe....Axisymmetric dual reciprocity boundary element method (DRBEM) with augmented items is extended to simulate the heat and mass transfer problems in the vertical Bridgman method (VBM) crystal growth of HgCdTe and CdZnTe. Axial solute concentration redistribution of three regions numerically reap-pears, and the influence of the pulling rate of the ampoule on it is further studied. Secondly, one di-mensional transient phase change phenomena is studied, and non-isothermal phase change phe-nomena is obtained from the initial transient region through the steady growth region to the final tran-sient region. Thirdly, the two-dimensional axisymmetric phase change interface position, interfacial shape and the temperature field of the melt and the crystal are numerically captured under the condi-tion to arrive at the steady state with zero pulling rate of the ampoule. Finally, the study of transient axisymmetric non-isothermal phase change phenomena is stressed and the results are compared with those in isothermal phase change. The influence of the pulling rate on non-isothermal phase change phenomena is revealed.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50336040)
文摘Axisymmetric dual reciprocity boundary element method (DRBEM) with augmented items is extended to simulate the heat and mass transfer problems in the vertical Bridgman method (VBM) crystal growth of HgCdTe and CdZnTe. Axial solute concentration redistribution of three regions numerically reap-pears, and the influence of the pulling rate of the ampoule on it is further studied. Secondly, one di-mensional transient phase change phenomena is studied, and non-isothermal phase change phe-nomena is obtained from the initial transient region through the steady growth region to the final tran-sient region. Thirdly, the two-dimensional axisymmetric phase change interface position, interfacial shape and the temperature field of the melt and the crystal are numerically captured under the condi-tion to arrive at the steady state with zero pulling rate of the ampoule. Finally, the study of transient axisymmetric non-isothermal phase change phenomena is stressed and the results are compared with those in isothermal phase change. The influence of the pulling rate on non-isothermal phase change phenomena is revealed.