The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only...The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.展开更多
A unitary right R-module MR satisfies acc on d-annihilators if for every sequence(a;);of elements of R the ascending chain AnnM(a;)■ AnnM(a;a;)■AnnM(a;a;a;)■… of submodules of MR stabilizes. In this paper ...A unitary right R-module MR satisfies acc on d-annihilators if for every sequence(a;);of elements of R the ascending chain AnnM(a;)■ AnnM(a;a;)■AnnM(a;a;a;)■… of submodules of MR stabilizes. In this paper we first investigate some triangular matrix extensions of modules with acc on d-annihilators. Then we show that under some additional conditions,the Ore extension module M[x]R[x;α,δ]over the Ore extension ring R[x;α,δ] satisfies acc on d-annihilators if and only if the module MR satisfies acc on d-annihilators. Consequently, several known results regarding modules with acc on d-annihilators are extended to a more general setting.展开更多
基金Supported by the NSFC (10771058, 11071062, 10871205), NSFH (10JJ3065)Scientific Research Fund of Hunan Provincial Education Department (10A033)Hunan Provincial Degree and Education of Graduate Student Foundation (JG2009A017)
文摘The notion of weakly relatively prime and W-Gr6bner basis in K[x1, x2,…, xn] are given. The following results are obtained: for polynomials fl, f2, ..., fm, {f1^λ1, f2^λ2,…, fm^λm} is a GrSbner basis if and only if f1, f2, …, fm are pairwise weakly relatively prime with λ1, λ2, …, λm arbitrary non-negative integers; polynomial composition by θ = (θ1,θ2, …, θn) commutes with monomial-Grobner bases computation if and only if θ1, θ2, , θm are pairwise weakly relatively prime.
基金The NSF(11471108) of Chinathe NSF(2015JJ2051,2016JJ2050) of Hunan Provincethe Teaching Reform Foundation(G21316) of Hunan Province
文摘A unitary right R-module MR satisfies acc on d-annihilators if for every sequence(a;);of elements of R the ascending chain AnnM(a;)■ AnnM(a;a;)■AnnM(a;a;a;)■… of submodules of MR stabilizes. In this paper we first investigate some triangular matrix extensions of modules with acc on d-annihilators. Then we show that under some additional conditions,the Ore extension module M[x]R[x;α,δ]over the Ore extension ring R[x;α,δ] satisfies acc on d-annihilators if and only if the module MR satisfies acc on d-annihilators. Consequently, several known results regarding modules with acc on d-annihilators are extended to a more general setting.