多视觉传感器协同对空实现全区域覆盖的弱小目标检测,在近距离防空领域中具有重要意义。现有的全区域覆盖方法存在覆盖率低、随机性差等问题,弱小目标检测算法存在模型大、定位及分类准确性低等问题。提出了一种高效的对空全区域覆盖算...多视觉传感器协同对空实现全区域覆盖的弱小目标检测,在近距离防空领域中具有重要意义。现有的全区域覆盖方法存在覆盖率低、随机性差等问题,弱小目标检测算法存在模型大、定位及分类准确性低等问题。提出了一种高效的对空全区域覆盖算法和轻量级弱小目标检测算法,通过结合最大面积优先法和最小曼哈顿离法改善存在覆盖死角和随机性差等问题。提出密集通道扩展网络(dense and channel expand network,DCENet)模型,基于轻量级稠密拼接和自适应尺寸通道扩展方法,在弱小目标数据集上获得了比原算法更有竞争力的平均精度结果。展开更多
文摘多视觉传感器协同对空实现全区域覆盖的弱小目标检测,在近距离防空领域中具有重要意义。现有的全区域覆盖方法存在覆盖率低、随机性差等问题,弱小目标检测算法存在模型大、定位及分类准确性低等问题。提出了一种高效的对空全区域覆盖算法和轻量级弱小目标检测算法,通过结合最大面积优先法和最小曼哈顿离法改善存在覆盖死角和随机性差等问题。提出密集通道扩展网络(dense and channel expand network,DCENet)模型,基于轻量级稠密拼接和自适应尺寸通道扩展方法,在弱小目标数据集上获得了比原算法更有竞争力的平均精度结果。