A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylen...A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.展开更多
Three two-dimensional like conjugated copolymers PFSDCN,PFSDTA and PFSDCNIO,which consist of alternating fluorene and triphenylamine main chain,and different pendant acceptor groups (malononitrile,1,3-diethtyl-2-thiob...Three two-dimensional like conjugated copolymers PFSDCN,PFSDTA and PFSDCNIO,which consist of alternating fluorene and triphenylamine main chain,and different pendant acceptor groups (malononitrile,1,3-diethtyl-2-thiobarbituric acid and 2-(1,2-dihydro-1-oxoinden-3-ylidene)malononitrile) with thiophene as π-bridge,have been designed,synthesized and characterized.The structure-property relationships of the two-dimensional like conjugated copolymers were systematically investigated.The absorption spectra,band gaps,and energy levels of the polymers were effectively tuned by simply attaching different acceptor groups.As the electron-withdrawing ability of the acceptors increased,the band gaps of the polymers were narrowed from 2.05 to 1.61 eV;meanwhile,the LUMO energy levels of the polymers decreased from -3.27 to -3.75 eV,whereas their relatively deep HOMO energy levels of ~-5.35 eV were preserved.BHJ solar cells were fabricated and characterized by using the three polymers as donor materials and the highest power conversion efficiency of 2.87% was achieved for the device based on PFSDTA:(6,6)-phenyl-C71-butyric acid methyl ester blend.展开更多
A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporti...A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporting material for polymer light-emitting diodes (PLEDs). The unique solubility in polar solvents and crosslinkable ability of PFN-C render it a good can- didate for solution processed multilayer PLEDs. It was found that PFN-C can greatly enhance the electron injection from high work-function metal cathode, due to its pendant amino groups. As a result, PLEDs with PFN-C/Al cathode exhibited compara- ble device performance to the devices with Ba/Al cathode. The resulting green light-emitting device showed promising perfor- mance with a maximum luminance efficiency of 13.53 cd A-1.展开更多
A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient el...A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.展开更多
基金supported by the National Natural Science Foundation of China (21125419, 50990065, 51010003, 51073058, and 20904011)National Research Project (2009CB623601 and 2009CB930604)
文摘A series of alkali metal salts doped pluronic block copolymer F127 were used as electron injection/transport layers (ETLs) for polymer light-emitting diodes with poly[2-(4-(3′,7′-dimethyloctyloxy)-phenyl)-p-phenylenevinylene] (P-PPV) as the emission layer. It was found that the electron transport capability of F127 can be effectively enhanced by doping with alkali metal salts. By using Li2CO3 (15%) doped F127 as ETL, the resulting device exhibited improved performance with a maximum luminous efficiency (LE) of 13.59 cd/A and a maximum brightness of 5529 cd/m2, while the device with undoped F127 as ETL only showed a maximum LE of 8.78 cd/A and a maximum brightness of 2952 cd/m2. The effects of the doping concentration, cations and anions of the alkali metal salts on the performance of the resulting devices were investigated. It was found that most of the alkali metal salt dopants can dramatically enhance the electron transport capability of F127 ETL and the performance of the resulting devices was greatly improved.
基金supported by the National Natural Science Foundation of China (50990065,51010003,51073058 and 20904011)the National Basic Research Program of China (973 Program) (2009CB623601)+1 种基金the Fundamental Research Funds for the Central Universities,South China University of Technology (2009220012,2009220043)the supported UGC grant (#400897) of the University of Hong Kong and Hong Kong Research Grants Council (HKU#712108 and HKU#712010) from the Research Grants Council of the Hong Kong Special Administrative Region,China
文摘Three two-dimensional like conjugated copolymers PFSDCN,PFSDTA and PFSDCNIO,which consist of alternating fluorene and triphenylamine main chain,and different pendant acceptor groups (malononitrile,1,3-diethtyl-2-thiobarbituric acid and 2-(1,2-dihydro-1-oxoinden-3-ylidene)malononitrile) with thiophene as π-bridge,have been designed,synthesized and characterized.The structure-property relationships of the two-dimensional like conjugated copolymers were systematically investigated.The absorption spectra,band gaps,and energy levels of the polymers were effectively tuned by simply attaching different acceptor groups.As the electron-withdrawing ability of the acceptors increased,the band gaps of the polymers were narrowed from 2.05 to 1.61 eV;meanwhile,the LUMO energy levels of the polymers decreased from -3.27 to -3.75 eV,whereas their relatively deep HOMO energy levels of ~-5.35 eV were preserved.BHJ solar cells were fabricated and characterized by using the three polymers as donor materials and the highest power conversion efficiency of 2.87% was achieved for the device based on PFSDTA:(6,6)-phenyl-C71-butyric acid methyl ester blend.
基金financially supported by the Natural Science Foundation of China (50990065, 51010003, 51073058 & 20904011)the National Basic Research Program of China (973 Program, 2009CB623601)the Fun-damental Research Funds for the Central Universities, South China Uni-versity of Technology
文摘A novel crosslinkable water/alcohol soluble conjugated polymer PFN-C containing oxetane groups and aminoalkyl groups in the side chains has been developed and used as highly efficient electron injection and transporting material for polymer light-emitting diodes (PLEDs). The unique solubility in polar solvents and crosslinkable ability of PFN-C render it a good can- didate for solution processed multilayer PLEDs. It was found that PFN-C can greatly enhance the electron injection from high work-function metal cathode, due to its pendant amino groups. As a result, PLEDs with PFN-C/Al cathode exhibited compara- ble device performance to the devices with Ba/Al cathode. The resulting green light-emitting device showed promising perfor- mance with a maximum luminance efficiency of 13.53 cd A-1.
基金financially supported by the National Basic Research Program of China (2009CB623601,2009CB930604,2011AA03A110)the National Natural Science Foundation of China (21125419,50990065,51073057,91233116)+1 种基金the Guangdong Natural Science Foundation (S2012030006230)the Research Fund for the Doctoral Program of Higher Education of China (20120172140001)
文摘A series of alcohol soluble amino-functionalized carbazole-based copolymers were synthesized via Suzuki coupling reaction. The pendent amino groups endow them high solubility in polar solvents, as well as efficient electron injection capability from high work-function metals. The relationships between the photophysical and electrochemical properties and the polymer backbone structure were systematically investigated. These alcohol-soluble carbazole-based copolymers were used as cathode interlayers between the high work-function metal A1 cathode and P-PPV emissive layer in polymer light-emitting diodes with device structure of ITO/PEDOT:PSS/P-PPV/interlayer/A1. The resulting devices exhibited improved performance due to the better electron injection/transporting ability of the designed copolymers from A1 cathode to the light-emitting layer.