期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于细菌群体感应的抗生素联合毒性评估
1
作者 黄颂 张玉莲 +4 位作者 姚静怡 戴佳敏 孙昊宇 刘树深 唐量 《中国科学:技术科学》 EI CSCD 北大核心 2024年第10期1949-1965,共17页
抗生素作为一类新污染物能够对环境中以细菌为代表的微生物圈产生胁迫,影响生态系统的稳定性.环境中的抗生素往往以混合物形式存在,因此抗生素联合毒性的精准解析对于其生态风险评估具有重要意义.然而,目前缺乏从细菌群体行为入手对抗... 抗生素作为一类新污染物能够对环境中以细菌为代表的微生物圈产生胁迫,影响生态系统的稳定性.环境中的抗生素往往以混合物形式存在,因此抗生素联合毒性的精准解析对于其生态风险评估具有重要意义.然而,目前缺乏从细菌群体行为入手对抗生素联合毒性进行深入分析的有关报道.本研究以磺胺甲氧嗪(sulfamethoxypyridazine,SMP)和四环素(tetracylinehydrochloride,TH)作为抗生素代表,选择风险评估中常用的费氏弧菌(Aliivibrio fischeri,A.fischeri)生物发光作为测试终点,利用微孔板法测定受试抗生素对生物发光在24 h内的毒性效应,基于独立作用模型评估SMP和TH的联合毒性作用,并考虑细菌在真实环境中可能遇到的群体感应(quorum sensing,QS)信号分子,利用交互效应评估信号分子与抗生素之间的联合作用.结果表明,SMP,TH及SMP&TH混合物均对A.fischeri生物发光产生了低浓度促进、高浓度抑制的毒物兴奋效应(hormesis),且该双相剂量-效应具有随时间变化特征.同时,SMP&TH的联合作用及其强度也表现出浓度和时间依赖特性.利用实时荧光定量多聚核苷酸链式反应技术、体外生物发光反应模拟实验和分子对接技术进行机制探究发现,SMP和TH分别作用于细菌QS系统中的信号通路蛋白和萤光素酶进而产生hormesis和联合作用的异质性模式,而暴露时间依赖特征则是由细菌QS活性在24 h内由无到弱再到强的变化规律所导致的.外源N-3-氧代己酰-DL-高丝氨酸内酯(N-(β-Ketocaproyl)-DL-homoserine lactone,通常以C6表示)信号分子的加入不仅改变了SMP,TH及SMP&TH混合物的毒性效应,还影响了SMP与TH之间的联合毒性作用.此外,SMP,TH与外源C6的交互效应以协同为主,而SMP&TH与外源C6的交互效应随暴露时间变化.本研究证明了细菌群体行为在调控抗生素单一及联合毒性中的关键作用,并阐释了环境系统中外界信号分子对抗生素诱导细菌毒性的影响,为以抗生素为代表的新污染物生态风险评估提供了重要参考与数据支撑. 展开更多
关键词 混合抗生素 联合毒性 群体感应 信号分子 交互效应 生物发光
原文传递
经桡动脉与股动脉入路血管内治疗颅内动脉瘤的对比研究
2
作者 刘全亮 孙滔 +4 位作者 刘树燊 余梦晨 毛波 邓林 王东海 《中华神经外科杂志》 CSCD 北大核心 2024年第1期79-83,共5页
目的对比评价采用经桡动脉入路(TRA)与经股动脉入路(TFA)血管内治疗颅内动脉瘤的安全性及可行性。方法回顾性分析2022年3-8月山东大学齐鲁医院神经外科采用血管内治疗的颅内动脉瘤患者的临床资料,共118例,其中采用TRA51例,采用TFA67例... 目的对比评价采用经桡动脉入路(TRA)与经股动脉入路(TFA)血管内治疗颅内动脉瘤的安全性及可行性。方法回顾性分析2022年3-8月山东大学齐鲁医院神经外科采用血管内治疗的颅内动脉瘤患者的临床资料,共118例,其中采用TRA51例,采用TFA67例。两组患者的年龄、性别、相关疾病史、动脉瘤特征等的差异均无统计学意义(均P>0.05)。比较两组患者的穿刺成功时间、工作入路角度、指引导管到位时间、手术时间、即刻栓塞效果、患者手术时舒适度评分、手术相关并发症(穿刺点假性动脉瘤、术中血栓形成、支架内血栓形成、症状性脑梗死)的差异。结果两组患者均手术成功,无一例术中更换入路。TRA组与TFA组的工作入路角度[M(Q_(1),Q_(3))]分别为45(33,62)°59(50,68)°,指引导管到位时间[M(Q_(1),Q_(3))]分别为12(8,20)min、9(7,10)min,患者舒适度评分[M(Q_(1),Q_(3))]分别为93(89,98)分、73(68,76)分,差异均有统计学意义(均P<0.05)。而穿刺时间、动脉瘤栓塞效果及手术相关并发症发生率的差异均无统计学意义(均P>0.05)。结论与TFA相比,采用TRA血管内治疗颅内动脉瘤安全可行,在患者舒适度方面更具优势。 展开更多
关键词 颅内动脉瘤 血管内操作 经桡动脉入路 经股动脉入路 治疗结果 对比研究
原文传递
Back-propagation network improved by conjugate gradient based on genetic algorithm in QSAR study on endocrine disrupting chemicals 被引量:7
3
作者 JI Li WANG XiaoDong +2 位作者 YANG XuShu liu shushen WANG LianSheng 《Chinese Science Bulletin》 SCIE EI CAS 2008年第1期33-39,共7页
Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the p... Since the complexity and structural diversity of man-made compounds are considered, quantitative structure-activity relationships (QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals (EDCs). The artificial neural net-works (ANN) are capable of recognizing highly nonlinear relationships, so it will have a bright applica-tion prospect in building high-quality QSAR models. As a popular supervised training algorithm in ANN, back-propagation (BP) converges slowly and immerses in vibration frequently. In this paper, a research strategy that BP neural network was improved by conjugate gradient (CG) algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs. This re-sulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set, q2pred of 0.81 and root-mean-square error (RMSE) of 0.688 for the test set. The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds. 展开更多
关键词 化学药物 内分泌 人造神经网络 遗传算法
原文传递
Quantitative structure—activity relationship 0t estrogen activities of bisphenol A analogs 被引量:1
4
作者 CUI Shihai liu shushen +2 位作者 YANG Jing WANG Xiaodong WANG Liansheng 《Chinese Science Bulletin》 SCIE EI CAS 2006年第3期287-292,共6页
The molecular electronegativity-distance vector (MEDV) is employed to describe the chemical structure of bisphenol A analogs and their correlated estrogen activities. The result shows that the constructed models have ... The molecular electronegativity-distance vector (MEDV) is employed to describe the chemical structure of bisphenol A analogs and their correlated estrogen activities. The result shows that the constructed models have good predictability and indicates substructures that may influence estrogen activities of chemicals. 展开更多
关键词 双酚A类似物 内分泌紊乱化学制品 分子负电性距离向量 雌激素 定量构效关系
原文传递
QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network
5
作者 JI Li WANG XiaoDong +4 位作者 LUO Si QIN Liang YANG XvShu liu shushen WANG LianSheng 《Science China Chemistry》 SCIE EI CAS 2008年第7期677-683,共7页
Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a pow- erful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing dru... Computer-based quantitative structure-activity relationship (QSAR) model has been becoming a pow- erful tool in understanding the structural requirements for chemicals to bind the estrogen receptor (ER), designing drugs for human estrogen replacement therapy, and identifying potential estrogenic endo- crine disruptors. In this study, a simple yet powerful neural network technique, generalized regression neural network (GRNN) was used to develop a QSAR model based on 131 structurally diverse estro- gens (training set). Only nine descriptors calculated solely from the molecular structures of com- pounds selected by objective and subjective feature selections were used as inputs of the GRNN model. The predictive power of the built model was found to be comparable to that of the more traditional techniques but requiring significantly easy implementation and a shorter computation-time. The ob- tained result indicates that the proposed GRNN model is robust and satisfactory, and can provide a feasible and practical tool for the rapid screening of the estrogenic activity of organic compounds. 展开更多
关键词 quantitative STRUCTURE-ACTIVITY relationship ESTROGEN receptor ENDOCRINE disruptors generalized regression neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部