[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for imp...[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.展开更多
We constructed a six-dimensional potential energy surface(PES)for the dissociative chemisorption of HCl on Au(111)using the neural networks method based on roughly 70000 energies obtained from extensive density functi...We constructed a six-dimensional potential energy surface(PES)for the dissociative chemisorption of HCl on Au(111)using the neural networks method based on roughly 70000 energies obtained from extensive density functional theory(DFT)calculations.The resulting PES is accurate and smooth,based on the small fitting errors and good agreement between the fitted PES and the direct DFT calculations.Time-dependent wave packet calculations show that the potential energy surface is very well converged with respect to the number of DFT data points,as well as to the fitting process.The dissociation probabilities of HCl initially in the ground rovibrational state from six-dimensional quantum dynamical calculations are quite diferent from the four-dimensional fixed-site calculations,indicating it is essential to perform full-dimensional quantum dynamical studies for the title molecule-surface interaction system.展开更多
文摘[Introduction] Accurate calculation of the hydrodynamic coefficients for floating structures and the investigation of the flow field distribution around floating bodies on the marine free surface are essential for improving the engineering design and application of marine structures.[Method] This study utilized the computational fluid dynamics(CFD) approach and the Reynolds Averaged NavierStokes(RANS) method and considered the effects of viscosity and free surface interactions on the hydrodynamic behavior of floating structures.By employing the dynamic mesh technique,this study simulated the periodic movements of simplified three-dimensional(3D)shapes:spheres,cylinders,and cubes,which were representative of complex marine structures.The volume of fluid(VOF) method was leveraged to accurately track the nonlinear behavior of the free surface.In this analysis,the added mass and damping coefficients for the fundamental modes of motion(surge,heave,and roll) were calculated across a spectrum of frequencies,facilitating the fast determination of hydrodynamic forces and moments exerted on floating structures.[Result] The results of this study are not only consistent with the results of the 3D potential flow theory but also further reflect the role of viscosity.This method can be used for precise calculation of the hydrodynamic coefficients of floating structures and for describing the flow field of such structures in motion on a free surface.[Conclusion] The methodology presented goes beyond the traditional potential flow approach.
基金supported by the National Natural Science Foundation of China(91221301 and 90921014)the Chinese Academy of Sciences,and Ministry of Science and Technology of China
文摘We constructed a six-dimensional potential energy surface(PES)for the dissociative chemisorption of HCl on Au(111)using the neural networks method based on roughly 70000 energies obtained from extensive density functional theory(DFT)calculations.The resulting PES is accurate and smooth,based on the small fitting errors and good agreement between the fitted PES and the direct DFT calculations.Time-dependent wave packet calculations show that the potential energy surface is very well converged with respect to the number of DFT data points,as well as to the fitting process.The dissociation probabilities of HCl initially in the ground rovibrational state from six-dimensional quantum dynamical calculations are quite diferent from the four-dimensional fixed-site calculations,indicating it is essential to perform full-dimensional quantum dynamical studies for the title molecule-surface interaction system.