The efficiency-upgrading role that La0.8Sr0.2CoO3 plays in the thermoelectric properties of Bi Cu Se O(BCSO) has been studied. LSCO was introduced into BCSO, increasing the electrical conductivity from 3.3 to 52.3 S...The efficiency-upgrading role that La0.8Sr0.2CoO3 plays in the thermoelectric properties of Bi Cu Se O(BCSO) has been studied. LSCO was introduced into BCSO, increasing the electrical conductivity from 3.3 to 52.3 S cm^-1 at 303 K, from 35.8 to 97.3 S cm^-1 at 873 K; respectively. The Seebeck coefficient of all composites still holds around or more than 200 μV/K. Based on the enhanced electrical conductivity and high Seebeck coefficient, the power factor is enhanced by approximately 35%, with the best sample reaching a maximum value of 476.7 μ Wm^-1 K^-2 at 873 K. The lattice thermal conductivity of the nanocomposites is reduced as LSCO content increases from 15 vol% to 30 vol% due to the phonon scattering by nanoparticles and grain boundaries, resulting in a significant reduction in total thermal conductivity. In short, the enhanced thermoelectric figure of merit of 0.67 at 873 K for the sample containing 20 vol% LSCO as compared to 0.53 for the pure sample; announces the promising effect of LSCO on improving thermoelectric properties of Bi Cu Se O.展开更多
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB632506)the National Natural Science Foundation of China(Grant Nos.51328203,51221291&11234012)the Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20120002110006)
文摘The efficiency-upgrading role that La0.8Sr0.2CoO3 plays in the thermoelectric properties of Bi Cu Se O(BCSO) has been studied. LSCO was introduced into BCSO, increasing the electrical conductivity from 3.3 to 52.3 S cm^-1 at 303 K, from 35.8 to 97.3 S cm^-1 at 873 K; respectively. The Seebeck coefficient of all composites still holds around or more than 200 μV/K. Based on the enhanced electrical conductivity and high Seebeck coefficient, the power factor is enhanced by approximately 35%, with the best sample reaching a maximum value of 476.7 μ Wm^-1 K^-2 at 873 K. The lattice thermal conductivity of the nanocomposites is reduced as LSCO content increases from 15 vol% to 30 vol% due to the phonon scattering by nanoparticles and grain boundaries, resulting in a significant reduction in total thermal conductivity. In short, the enhanced thermoelectric figure of merit of 0.67 at 873 K for the sample containing 20 vol% LSCO as compared to 0.53 for the pure sample; announces the promising effect of LSCO on improving thermoelectric properties of Bi Cu Se O.