旨在了解猪脾转移因子(TF)对新城疫病毒(NDV)弱毒疫苗LaSota株的免疫增强效果及机制。本研究分别采用不同剂量(10^(-2)、10^(-3)、10^(-4)、10^(-5)羽份)LaSota疫苗株单独(单独免疫组)、LaSota疫苗株与TF联合(联合免疫组)免疫SPF鸡,14 ...旨在了解猪脾转移因子(TF)对新城疫病毒(NDV)弱毒疫苗LaSota株的免疫增强效果及机制。本研究分别采用不同剂量(10^(-2)、10^(-3)、10^(-4)、10^(-5)羽份)LaSota疫苗株单独(单独免疫组)、LaSota疫苗株与TF联合(联合免疫组)免疫SPF鸡,14 d后以NDV F 48 E 9强毒攻毒,同时设立对照组(非免疫攻毒)和空白组(非免疫非攻毒),并采用ELISA方法与蛋白质芯片技术分别测定外周血IL-4、IFN-γ与IL-12 P40浓度。结果显示,鸡免疫10^(-2)、10^(-3)、10^(-4)、10^(-5)羽份时疫苗攻毒保护率和半数保护量(PD_(50))如下:单独免疫组分别为100%、55%、0%、0%和0.0008羽份,联合免疫组分别为100%、75%、0%、0%和0.0005羽份,对照组和空白组死亡率分别为100%和0%。免疫10^(-3)羽份疫苗后,联合免疫组IL-4和IFN-γ含量均高于其他组,并于第7、14天差异极显著(P<0.01);攻毒后,联合免疫组IL-4、IFN-γ和IL-12 P40含量均高于其他组,IL-4于第1、14天,IFN-γ于第1、3天,IL-12 P40于第1天差异极显著(P<0.01)。综上表明,TF可增强IFN-γ、IL-12介导的细胞免疫和IL-4介导的体液免疫,提高LaSota株弱毒疫苗的免疫保护率,降低疫苗PD_(50);在抵抗NDV F 48 E 9强毒攻击时,联合免疫组的免疫保护率明显高于单独免疫组。展开更多
Networked cyber-physical systems are facing serious security threats from malicious attacks.It is noted that the networked cyber-physical system should take defense measures into account at the beginning of its constr...Networked cyber-physical systems are facing serious security threats from malicious attacks.It is noted that the networked cyber-physical system should take defense measures into account at the beginning of its construction.From the conservative defensive perspective,this paper proposes a robust optimal defense resource allocation strategy to reduce the maximum possible losses of the networked cyber-physical system caused by potential attacks.Then,based on the robust optimal allocation strategy,it can be proved that the topology of the networked cyber-physical system has a great influence on the loss function.In order to further improve security,the effects of adding redundant connections are investigated.Furthermore,by taking geographical knowledge into account,a hexagonal construction scheme is proposed for providing a geographically-feasible and economically-viable solution for building networked cyber-physical systems,where the loss function has a cubic decay.展开更多
文摘旨在了解猪脾转移因子(TF)对新城疫病毒(NDV)弱毒疫苗LaSota株的免疫增强效果及机制。本研究分别采用不同剂量(10^(-2)、10^(-3)、10^(-4)、10^(-5)羽份)LaSota疫苗株单独(单独免疫组)、LaSota疫苗株与TF联合(联合免疫组)免疫SPF鸡,14 d后以NDV F 48 E 9强毒攻毒,同时设立对照组(非免疫攻毒)和空白组(非免疫非攻毒),并采用ELISA方法与蛋白质芯片技术分别测定外周血IL-4、IFN-γ与IL-12 P40浓度。结果显示,鸡免疫10^(-2)、10^(-3)、10^(-4)、10^(-5)羽份时疫苗攻毒保护率和半数保护量(PD_(50))如下:单独免疫组分别为100%、55%、0%、0%和0.0008羽份,联合免疫组分别为100%、75%、0%、0%和0.0005羽份,对照组和空白组死亡率分别为100%和0%。免疫10^(-3)羽份疫苗后,联合免疫组IL-4和IFN-γ含量均高于其他组,并于第7、14天差异极显著(P<0.01);攻毒后,联合免疫组IL-4、IFN-γ和IL-12 P40含量均高于其他组,IL-4于第1、14天,IFN-γ于第1、3天,IL-12 P40于第1天差异极显著(P<0.01)。综上表明,TF可增强IFN-γ、IL-12介导的细胞免疫和IL-4介导的体液免疫,提高LaSota株弱毒疫苗的免疫保护率,降低疫苗PD_(50);在抵抗NDV F 48 E 9强毒攻击时,联合免疫组的免疫保护率明显高于单独免疫组。
基金This research was supported by the National Natural Science Foundation of China under Grant Nos.62025307 and U1913209.
文摘Networked cyber-physical systems are facing serious security threats from malicious attacks.It is noted that the networked cyber-physical system should take defense measures into account at the beginning of its construction.From the conservative defensive perspective,this paper proposes a robust optimal defense resource allocation strategy to reduce the maximum possible losses of the networked cyber-physical system caused by potential attacks.Then,based on the robust optimal allocation strategy,it can be proved that the topology of the networked cyber-physical system has a great influence on the loss function.In order to further improve security,the effects of adding redundant connections are investigated.Furthermore,by taking geographical knowledge into account,a hexagonal construction scheme is proposed for providing a geographically-feasible and economically-viable solution for building networked cyber-physical systems,where the loss function has a cubic decay.