In order to realize remote control of hydraulic transformers and improve the control precision of the pressure ratio,an integrated type electric hydraulic servo hydraulic transformer is proposed in this paper,a mathem...In order to realize remote control of hydraulic transformers and improve the control precision of the pressure ratio,an integrated type electric hydraulic servo hydraulic transformer is proposed in this paper,a mathematical model is built and simulation of electro-hydraulic servo integrated hydraulic transformer's control angle is carried out,the principle prototype of the transformer is designed and manufactured,and experimental study is carried out on the experimental bench. The experimental results verify the correctness of the mathematical model. The results show that electro hydraulic servo control can improve the accuracy and dynamic response speed of control angle,which provides a reference for the further research of the hydraulic transformers.展开更多
Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt t...Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt to sea depths.As working depths increase,seawater hydraulic technology faces enormous challenges.First,the physical and chemical properties of seawater,such as density,temperature,and composition,change significantly.Second,hydraulic components are subject to an environmental pressure of up to 110 MPa,which causes serious deformation or even seizure of moving pairs and significantly affects the efficiency of hydraulic components.The friction and wear characteristics between the moving pairs also significantly change with the change in sea depth,therefore developing the matching material according to depth is necessary.Finally,the cavitation characteristic of a valve port is obviously different from that on land,so special material and structure should be used to improve the service life of the valve port.These factors severely restrict the improvement of the working depths and characteristics of seawater hydraulic components.This article focuses on the abovementioned problems and provides solutions for deep-sea seawater hydraulic technology.展开更多
基金Supported by the National Natural Science Foundation of China(No.51575200)State Key Laboratory of Fluid Power Transmission and Control(No.GZKF-2008003)the Fourteenth Batch of High Level Talents Project of"Six Talents Summit"in Jiangsu(No.JXQC036)
文摘In order to realize remote control of hydraulic transformers and improve the control precision of the pressure ratio,an integrated type electric hydraulic servo hydraulic transformer is proposed in this paper,a mathematical model is built and simulation of electro-hydraulic servo integrated hydraulic transformer's control angle is carried out,the principle prototype of the transformer is designed and manufactured,and experimental study is carried out on the experimental bench. The experimental results verify the correctness of the mathematical model. The results show that electro hydraulic servo control can improve the accuracy and dynamic response speed of control angle,which provides a reference for the further research of the hydraulic transformers.
基金supported by the National Natural Science Foundation of China(Grant Nos.52075192&52122502)。
文摘Using seawater as the working medium,the seawater hydraulic system has significant advantages in the deep sea,such as eliminating contamination caused by oil leaks,no oil tanks,and the ability to automatically adapt to sea depths.As working depths increase,seawater hydraulic technology faces enormous challenges.First,the physical and chemical properties of seawater,such as density,temperature,and composition,change significantly.Second,hydraulic components are subject to an environmental pressure of up to 110 MPa,which causes serious deformation or even seizure of moving pairs and significantly affects the efficiency of hydraulic components.The friction and wear characteristics between the moving pairs also significantly change with the change in sea depth,therefore developing the matching material according to depth is necessary.Finally,the cavitation characteristic of a valve port is obviously different from that on land,so special material and structure should be used to improve the service life of the valve port.These factors severely restrict the improvement of the working depths and characteristics of seawater hydraulic components.This article focuses on the abovementioned problems and provides solutions for deep-sea seawater hydraulic technology.