Graphene has the advantages of high electrical conductivity,high heat conductivity,and low noise,which makes it a potential option for integrated circuits interconnection and nanoelectrodes.In this paper,we present a ...Graphene has the advantages of high electrical conductivity,high heat conductivity,and low noise,which makes it a potential option for integrated circuits interconnection and nanoelectrodes.In this paper,we present a novel fabrication method for graphene nanoeletrodes with nanogap.First,graphene grown by chemical vapor deposition(CVD)is assembled to a chip with microelectrodes.Second,an atomic force microscopy(AFM)based mechanical cutting method is developed to cut the graphene into nanoribbons and nanoeletrodes with nanogap.Then the electronic property of a single nanodot is characterized using the garphene nanoelectrodes,demonstrating the effectiveness of the graphene nanoelectrodes.The fabricated graphene nanoeletrode pairs can be used as probes to detect single molecule in micro-environment,and show an attractive prospect for future molecular electronics applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61106109,61304251)the CAS/SAFEA Internaional Partnership Program for Creative Research Teams
文摘Graphene has the advantages of high electrical conductivity,high heat conductivity,and low noise,which makes it a potential option for integrated circuits interconnection and nanoelectrodes.In this paper,we present a novel fabrication method for graphene nanoeletrodes with nanogap.First,graphene grown by chemical vapor deposition(CVD)is assembled to a chip with microelectrodes.Second,an atomic force microscopy(AFM)based mechanical cutting method is developed to cut the graphene into nanoribbons and nanoeletrodes with nanogap.Then the electronic property of a single nanodot is characterized using the garphene nanoelectrodes,demonstrating the effectiveness of the graphene nanoelectrodes.The fabricated graphene nanoeletrode pairs can be used as probes to detect single molecule in micro-environment,and show an attractive prospect for future molecular electronics applications.