The dehydrogenation reaction of H2S by the ^3Σ^- ground state of VS^+: VS^+ + H2S → VS2^+ + H2 has been studied by using Density Functional Theory (DPT) at the B3LYP/DZVP level. It is found that the reaction...The dehydrogenation reaction of H2S by the ^3Σ^- ground state of VS^+: VS^+ + H2S → VS2^+ + H2 has been studied by using Density Functional Theory (DPT) at the B3LYP/DZVP level. It is found that the reaction proceeds along two possible pathways (A and B) yielding two isomer dehydrogenation products VS2^+-1 (^3B2) and VS2^+-2 (^3A1), respectively. For both pathways, the reaction has a two-step-reaction mechanism that involves the migration of two hydrogen atoms from S2 to V^+, respectively. The migration of the second hydrogen via TS3 and that of the first via TS4 are the rate-determining steps for pathways A and B, respectively. The activation energy is 17.4 kcal/mol for pathway A and 22.8 kcal/mol for pathway B relative to the reactants. The calculated reaction heat of 9.9 kcal/mol indicates the endothermicity of pathway A and that of -11.9 kcal/mol suggests the exothermicity of pathway B.展开更多
文摘The dehydrogenation reaction of H2S by the ^3Σ^- ground state of VS^+: VS^+ + H2S → VS2^+ + H2 has been studied by using Density Functional Theory (DPT) at the B3LYP/DZVP level. It is found that the reaction proceeds along two possible pathways (A and B) yielding two isomer dehydrogenation products VS2^+-1 (^3B2) and VS2^+-2 (^3A1), respectively. For both pathways, the reaction has a two-step-reaction mechanism that involves the migration of two hydrogen atoms from S2 to V^+, respectively. The migration of the second hydrogen via TS3 and that of the first via TS4 are the rate-determining steps for pathways A and B, respectively. The activation energy is 17.4 kcal/mol for pathway A and 22.8 kcal/mol for pathway B relative to the reactants. The calculated reaction heat of 9.9 kcal/mol indicates the endothermicity of pathway A and that of -11.9 kcal/mol suggests the exothermicity of pathway B.