The Sentinel-2 A satellite having embedded advantage of red edge spectral bands offers multispectral imageries with improved spatial,spectral and temporal resolutions as compared to the other contemporary satellites p...The Sentinel-2 A satellite having embedded advantage of red edge spectral bands offers multispectral imageries with improved spatial,spectral and temporal resolutions as compared to the other contemporary satellites providing medium resolution data.Our study was aimed at exploring the potential of Sentinel-2 A imagery to estimate Above Ground Biomass(AGB) of Subtropical Pine Forest in Pakistan administered Kashmir.We developed an AGB predictive model using field inventory and Sentinel 2 A based spectral and textural parameters along with topographic features derived from ALOS Digital Elevation Model(DEM).Field inventory data was collected from 108 randomly distributed plots(0.1 ha each) across the study area.The stepwise linear regression method was employed to investigate the potential relationship between field data and corresponding satellite data.Biomass and carbon mapping of the study area was carried out through established AGB estimation model with R(o.86),R2(0.74),adjusted R2(0.72) and RMSE value of 33 t/ha.Our results showed that first order textures(mean,standard deviation and variance) significantly contributed in AGB predictive modeling while only one spectral band ratio made contribution from spectral domain.Our study leads to the conclusion that Sentinel-2 A optical data is a potential source for AGB estimation in subtropical pine forest of the area of interest with added benefit of its free of cost availability,higher quality data and long-term continuity that can be utilized for biomass carbon distribution mapping in the resource constraint study area for sustainable forest management.展开更多
Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the c...Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.展开更多
文摘The Sentinel-2 A satellite having embedded advantage of red edge spectral bands offers multispectral imageries with improved spatial,spectral and temporal resolutions as compared to the other contemporary satellites providing medium resolution data.Our study was aimed at exploring the potential of Sentinel-2 A imagery to estimate Above Ground Biomass(AGB) of Subtropical Pine Forest in Pakistan administered Kashmir.We developed an AGB predictive model using field inventory and Sentinel 2 A based spectral and textural parameters along with topographic features derived from ALOS Digital Elevation Model(DEM).Field inventory data was collected from 108 randomly distributed plots(0.1 ha each) across the study area.The stepwise linear regression method was employed to investigate the potential relationship between field data and corresponding satellite data.Biomass and carbon mapping of the study area was carried out through established AGB estimation model with R(o.86),R2(0.74),adjusted R2(0.72) and RMSE value of 33 t/ha.Our results showed that first order textures(mean,standard deviation and variance) significantly contributed in AGB predictive modeling while only one spectral band ratio made contribution from spectral domain.Our study leads to the conclusion that Sentinel-2 A optical data is a potential source for AGB estimation in subtropical pine forest of the area of interest with added benefit of its free of cost availability,higher quality data and long-term continuity that can be utilized for biomass carbon distribution mapping in the resource constraint study area for sustainable forest management.
基金supported by the National Natural Science Foundation of China(Grant No.41931293)the National Key Research and Development Program of China(Grant No.2017YFC0504701)。
文摘Increasing the quantity and improving the quality of cropland can alleviate the human-land contradiction and promote the sustainable development of agriculture especially in mountainous areas.With the support of the central government’s policies,Yan’an,Northern Shaanxi,China implemented a major land consolidation engineering project in the loess hilly-gully region from 2013 to 2018,achieving 33,333.3 ha of new cropland.However,the poor quality of some newly-constructed cropland at the initial stage hindered its efficient utilization.In order to overcome this problem,red clay and Malan loess were compounded in different volume ratios to explore the method to improve the cropland quality.The Root Zone Water Quality Model was used to simulate the effects of different soil treatments on soil water,nitrogen and maize growth.Experimental data were collected from 2018 to 2019 to calibrate and validate the model.The root mean square error(RMSE)of soil water content,nitrate nitrogen concentration,above-ground biomass,leaf area index were in the range of 11.72-14.06 mm,4.06-11.73 mg kg^(-1),835.21-1151.28 kg ha^(-1)and 0.24-0.47,respectively,while the agreement index(d)between measured and simulated values ranged from 0.70 to 0.96.It was showed that,compared with land constructed with Malan loess only(T1),the soil structure and hydraulic characteristics of land with a volume ratio of red clay and Malan loess of 2:1(T3)was better.Simulation indicated that,compared with T1,the soil water content and available water content of T3 increased by 14.4%and 19.0%,respectively,while N leaching decreased by 16.9%.The aboveground biomass and maize yield of T3 were 7.9%and 6.7%higher than that of T1,respectively.Furthermore,the water productivity and nitrogen use efficiency of T3 increased by 21.0%and 16.6%compared with that of T1.These results indicated that compounding red clay and Malan loess in an appropriate ratio was an effective method to improve soil quality.This study provides a technical idea and specific technical parameters for the construction or improvement of cropland in loess hilly-gully region,which may also provide reference for similar projects in other places.