The ratchet motion of a Brownian particle in a symmetric periodic potential under a rocking force thatbreaks the temporal symmetry is studied. As long as the relaxation time in the thermal background is much shorter t...The ratchet motion of a Brownian particle in a symmetric periodic potential under a rocking force thatbreaks the temporal symmetry is studied. As long as the relaxation time in the thermal background is much shorter thanthe forcing period, the unidirectional transport can be analytically treated. By solving the Fokker-Planck equations, weget an analytical expression of the current. This result indicates that with an appropriate match between the potentialfield, the asymmetric ac force and the thermal noise, a net current can be achieved. The current versus thermal noiseexhibits a stochastic-resonance-like behavior.展开更多
文摘The ratchet motion of a Brownian particle in a symmetric periodic potential under a rocking force thatbreaks the temporal symmetry is studied. As long as the relaxation time in the thermal background is much shorter thanthe forcing period, the unidirectional transport can be analytically treated. By solving the Fokker-Planck equations, weget an analytical expression of the current. This result indicates that with an appropriate match between the potentialfield, the asymmetric ac force and the thermal noise, a net current can be achieved. The current versus thermal noiseexhibits a stochastic-resonance-like behavior.