A stable transformation system for the expression of foreign genes in the unicellular greenmarine alga (Dunaliella salina Teod.) was established. Using electroporation, the alga was transformed witha plasmid containin...A stable transformation system for the expression of foreign genes in the unicellular greenmarine alga (Dunaliella salina Teod.) was established. Using electroporation, the alga was transformed witha plasmid containing the hepatitis B surface antigen (HBsAg) gene and the chloramphenicol acetyltransferase(CAT) gene as a selectable gene. PCR and Southern blotting analysis indicated that the HBsAEgene wasintegrated into the D. salina genome. Northern dotting analysis showed that the HBsAg gene was expressedat the mRNA level. The stable expression of HBsAg protein in transformants was confirmed by HBsAgenzyme-linked immunosorbent assay (HBsAg EUSA) and Western blotting analysis. Also, PCR and Southernblotting analyses showed that the CA Tgene was integrated into the D, salina genome, and CAT EUSAindicated that CAT protein was stably expressed in the cells. The introduced HBsAg DNA and HBsAgprotein expression were stably maintained for at least 60 generations in media devoid of chloramphenicol.This is the first report of the stable expression of foreign genes in D. salina.展开更多
文摘A stable transformation system for the expression of foreign genes in the unicellular greenmarine alga (Dunaliella salina Teod.) was established. Using electroporation, the alga was transformed witha plasmid containing the hepatitis B surface antigen (HBsAg) gene and the chloramphenicol acetyltransferase(CAT) gene as a selectable gene. PCR and Southern blotting analysis indicated that the HBsAEgene wasintegrated into the D. salina genome. Northern dotting analysis showed that the HBsAg gene was expressedat the mRNA level. The stable expression of HBsAg protein in transformants was confirmed by HBsAgenzyme-linked immunosorbent assay (HBsAg EUSA) and Western blotting analysis. Also, PCR and Southernblotting analyses showed that the CA Tgene was integrated into the D, salina genome, and CAT EUSAindicated that CAT protein was stably expressed in the cells. The introduced HBsAg DNA and HBsAgprotein expression were stably maintained for at least 60 generations in media devoid of chloramphenicol.This is the first report of the stable expression of foreign genes in D. salina.