We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner Hartree-Fock approximation scheme with the Argonne Va4 pote...We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner Hartree-Fock approximation scheme with the Argonne Va4 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.展开更多
The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing ga...The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much improved and agree well with the microscopic results.展开更多
基金supported by the Asia-Link project(CN/ASIA-LINK/008(94791))of the European Commissionin part by National Natural Science Foundation of China under Grant Nos.10775061,10505016,10575119,and 10175074+1 种基金the Knowledge Innovative Project of CAS under Grant No.KJCX3-SYW-N2the Major Prophase Research Project of Fundamental Research of the Ministry of Science and Technology of China under Grant No.2007CB815004
文摘We provide a microscopic calculation of neutron-proton and proton-proton cross sections in symmetric nuclear matter at various densities, using the Brueckner Hartree-Fock approximation scheme with the Argonne Va4 potential including the contribution of microscopic three-body force. We investigate separately the effects of three-body force on the effective mass and on the scattering amplitude. In the present calculation, the rearrangement contribution of three-body force is considered, which will reduce the neutron and proton effective mass, and depress the amplitude of cross section. The effect of three body force is shown to be repulsive, especially in high densities and large momenta, which will suppress the cross section markedly.
基金supported partially by the Fundamental Research Funds for the Central Universities and the National Natural Science Foundation of China (Grant Nos.10875150 and 10875157)
文摘The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much improved and agree well with the microscopic results.