Nano-sized bacterial pores were inserted into a lipid membrane as a nanobiosensor for the detection of single peptide molecules. Due to the intrinsic properties of single-channel conductance, the transit of individual...Nano-sized bacterial pores were inserted into a lipid membrane as a nanobiosensor for the detection of single peptide molecules. Due to the intrinsic properties of single-channel conductance, the transit of individual molecules through the pore can be studied. The analysis of both the blockage current and duration is able to provide specific structural information and allows the detection of specific peptides in bulk mixtures.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 20875030) the Shuguang Project of Shanghai (Grant No. 07SG36)
文摘Nano-sized bacterial pores were inserted into a lipid membrane as a nanobiosensor for the detection of single peptide molecules. Due to the intrinsic properties of single-channel conductance, the transit of individual molecules through the pore can be studied. The analysis of both the blockage current and duration is able to provide specific structural information and allows the detection of specific peptides in bulk mixtures.