All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds(BVOC). BVOC emissions have received increased scientific attention in the last two decades because theymay profound...All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds(BVOC). BVOC emissions have received increased scientific attention in the last two decades because theymay profoundly influence the chemical and physical properties of the atmosphere, and may modulate planttolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insectinteractions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOCcould have important consequence for the quality of air and contribute to pollution episodes. A screening ofBVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to bereliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plantphysiology and micrometeorology on selected urban forests, will allow detailed quantitative information onthe inventory of BVOC emissions by urban vegetation to be compiled. This information will make itpossible to propose an innovative management of urban vegetation in cities characterised by heavy emissionsof anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selectionof non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestationareas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and theconurbations.展开更多
文摘All plants emit a wide range of volatile compounds, the so-called biogenic volatile organic compounds(BVOC). BVOC emissions have received increased scientific attention in the last two decades because theymay profoundly influence the chemical and physical properties of the atmosphere, and may modulate planttolerance to heat, pollutants, oxidative stress and abiotic stresses, and affect plant-plant and plant-insectinteractions. Urban forestry may have a high impact on atmospheric composition, air quality, environment,and quality of life in urban areas. However, few studies have been carried out where the emission of BVOCcould have important consequence for the quality of air and contribute to pollution episodes. A screening ofBVOC emission by the mixed stand constituting urban forests is therefore required if emissions are to bereliably predicted. Monitoring the emission rates simultaneously with measurements of air quality, plantphysiology and micrometeorology on selected urban forests, will allow detailed quantitative information onthe inventory of BVOC emissions by urban vegetation to be compiled. This information will make itpossible to propose an innovative management of urban vegetation in cities characterised by heavy emissionsof anthropogenic pollutants, aiming at the abatement of BVOC emissions through the introduction or selectionof non-BVOC emitting species in urban areas subjected to pollution episodes and in the new afforestationareas covering peri-urban parks, green belts and green corridors between peri-urban rural areas and theconurbations.