Experiments were carried out to investigate the characteristics of oil-gas flow in a horizontal pipe on a large scale (with the inner diameter D = 125 mm). With the experimental data, the flow patterns were presente...Experiments were carried out to investigate the characteristics of oil-gas flow in a horizontal pipe on a large scale (with the inner diameter D = 125 mm). With the experimental data, the flow patterns were presented. Through the analyses for the flow regime transition, it was found that there was a critical superficial velocity of liquid phase for the flow regime transiting from stratified flow to slug flow. The slug flow could not occur until the superficial velocity of liquid phase was higher than the critical velocity. For the flow pattern transiting from stratified to slug flow, the transmitting velocity of gas phase decreases with the augmentation of superficial velocity of liquid phase. On the basis of the experiments, numerical simulations of different flow patterns and their transitions were performed with the use of the Volume Of Fluid (VOF) technique. The results of the computations are shown to match well with the measured data in the experiments.展开更多
基金the National Natural Science Foundation of China (Grant No. 50476015).
文摘Experiments were carried out to investigate the characteristics of oil-gas flow in a horizontal pipe on a large scale (with the inner diameter D = 125 mm). With the experimental data, the flow patterns were presented. Through the analyses for the flow regime transition, it was found that there was a critical superficial velocity of liquid phase for the flow regime transiting from stratified flow to slug flow. The slug flow could not occur until the superficial velocity of liquid phase was higher than the critical velocity. For the flow pattern transiting from stratified to slug flow, the transmitting velocity of gas phase decreases with the augmentation of superficial velocity of liquid phase. On the basis of the experiments, numerical simulations of different flow patterns and their transitions were performed with the use of the Volume Of Fluid (VOF) technique. The results of the computations are shown to match well with the measured data in the experiments.