A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy conta...A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy contained less crystalline Al_3Ni than Al-Ni alloy. After alkaline extraction, most of Al in the Ni-RE-P-Al alloy was leached out and the resulted Ni-RE-P-Al catalyst presented a sponge structure similar to Raney Ni. Although crystalline Ni is the major phase in the Ni-RE-P-Al catalyst and Raney Ni, amorphous Ni-P phase has been detected in the Ni-RE-P-Al catalyst. Studies on catalytic hydrogenation of toluene, phenyl ethylene, acetylene benzene, nitrobenzene, cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-Al catalyst are superior to those of Raney Ni, especially at low temperatures. The amorphous phase is considered to be responsible for its superior catalytic properties.展开更多
基金the National Natural Science Foundation of China.
文摘A Ni-RE-P-Al catalyst prepared by alkaline extraction of a rapidly quenched Ni-RE-P-Al alloy was characterized by means of ICP, BET, XRD, XPS and TEM. The results show that the rapidly quenched Ni-RE-P-Al alloy contained less crystalline Al_3Ni than Al-Ni alloy. After alkaline extraction, most of Al in the Ni-RE-P-Al alloy was leached out and the resulted Ni-RE-P-Al catalyst presented a sponge structure similar to Raney Ni. Although crystalline Ni is the major phase in the Ni-RE-P-Al catalyst and Raney Ni, amorphous Ni-P phase has been detected in the Ni-RE-P-Al catalyst. Studies on catalytic hydrogenation of toluene, phenyl ethylene, acetylene benzene, nitrobenzene, cyclohexanone and adiponitrile in liquid phase showed that the activity and selectivity of this Ni-RE-P-Al catalyst are superior to those of Raney Ni, especially at low temperatures. The amorphous phase is considered to be responsible for its superior catalytic properties.