Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluate...Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluated using PCR amplification, test paper evaluation, insect resistance evaluation in both the laboratory and paddy fields, nursery evaluation of rice blast resistance and pedigree selection of agronomic traits. Larval mortalities on Bt5198 and Bt Minghui 63 were 100% when rice culms were inoculated with the eggs of the striped stem borer (SSB) in the laboratory. Bt5198 was highly resistant against SSB and the yellow stem borer (YSB) under field conditions. The F1 hybrids derived from Bt5198 and four cytoplasmic male sterile (CMS) lines were also highly resistant to SSB and YSB and had a significant heterosis. Two-year evaluation of rice blast resistance confirmed that the resistance levels of Bt5198 to leaf blast and neck blast were similar to those of Chenghui 177 and significantly better than those of Bt Minghui 63. Seed germination ability and pollen yield of Bt5198 were similar with Chenghui 177, suggesting that the introduction of the Bt gene into the new restorer line had no significant effects on seed vitality or the yield of seed production. To identify the presence of the Bt gene, it was effective to combine test paper examination with the evaluation of insect-resistance, both in the laboratory and under field conditions.展开更多
supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Researc...supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)展开更多
基金supported by the grant from the National Research and Development Project of Transgenic Crops of Ministry of Science and Technology of China (Grant No.JY03-B-11)
文摘Bt5198, a new rice restorer line containing Bt gene, was developed from the cross and backcross of the elite restorer line Chenghui 177 with Bt Minghui 63, a transgenic Bt restorer line. The inbred lines were evaluated using PCR amplification, test paper evaluation, insect resistance evaluation in both the laboratory and paddy fields, nursery evaluation of rice blast resistance and pedigree selection of agronomic traits. Larval mortalities on Bt5198 and Bt Minghui 63 were 100% when rice culms were inoculated with the eggs of the striped stem borer (SSB) in the laboratory. Bt5198 was highly resistant against SSB and the yellow stem borer (YSB) under field conditions. The F1 hybrids derived from Bt5198 and four cytoplasmic male sterile (CMS) lines were also highly resistant to SSB and YSB and had a significant heterosis. Two-year evaluation of rice blast resistance confirmed that the resistance levels of Bt5198 to leaf blast and neck blast were similar to those of Chenghui 177 and significantly better than those of Bt Minghui 63. Seed germination ability and pollen yield of Bt5198 were similar with Chenghui 177, suggesting that the introduction of the Bt gene into the new restorer line had no significant effects on seed vitality or the yield of seed production. To identify the presence of the Bt gene, it was effective to combine test paper examination with the evaluation of insect-resistance, both in the laboratory and under field conditions.
基金supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604)a grant from the Youth Foundation in Sichuan, China (2011JTD0022)+1 种基金the special fund for China Agricultural Research System (CARS-01-08)the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)
文摘supported by a grant from the National High-Tech R&D Program of China (2014AA10A603, 2014AA10A604);a grant from the Youth Foundation in Sichuan, China (2011JTD0022);the special fund for China Agricultural Research System (CARS-01-08);the Provincial Specialized Funds for Innovation Ability Promotion in Sichuan, China (2013GXJS005)