期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of Non-Axisymmetric End Wall on a Highly Loaded Compressor Cascade in Multi-Conditions 被引量:2
1
作者 HUANG Song YANG Chengwu +3 位作者 LI Ziliang HAN Ge ZHAO Shengfeng lu xin’gen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1363-1375,共13页
As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103... As an effective method to influence end wall flow field,non-axisymmetric profiled end wall can improve the aerodynamic performance of compressor cascades.For a highly loaded low pressure compressor cascade,called V103,the study found the optimal non-axisymmetric profiled end wall decreases total pressure loss coefficient by 4.57%,5.48%and 3.04%under incidences of–3°,0°,and 3°,respectively,compared with those of the planar end wall.The optimal non-axisymmetric profiled end wall changes the structure of secondary flow in hub region,generating a corner vortex near suction surface,inhibiting the development of the passage vortex towards suction surface and reducing flow separation.When the inlet Mach numbers are 0.62 and 0.72,the total pressure loss coefficient decreases by 3.19%and 4.58%for optimal non-axisymmetric profiled end wall compared with those of the planar end wall.Though optimal non-axisymmetric profiled end wall increases total pressure loss near hub region in blade passage under different inlet Mach numbers,the peak value and region of high loss coefficient above 10%span in blade passage significantly decrease.In addition,different incidences affect the secondary flow streamlines and vortex structure near the cascade hub region,however,different inlet Mach numbers hardly change the secondary flow streamlines and vortex structure.In short,the optimal non-axisymmetric profiled end wall shows better aerodynamic performance than the planar end wall for the highly loaded compressor cascade in multi-conditions. 展开更多
关键词 non-axisymmetric profiled end wall total pressure loss highly loaded compressor cascade passage vortex
原文传递
Numerical Investigation of a Centrifugal Compressor with a Pre-Compression Wedge Diffuser under High Subsonic Conditions 被引量:1
2
作者 WANG Yi LI Qingkuo +2 位作者 BAI Huan ZHOU Xueqi lu xin’gen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期945-954,共10页
As the total pressure ratio of centrifugal compressors increases, the diffuser inlet flow becomes highly subsonic or even supersonic, which causes additional shock loss. The shock loss leads the stage performance to d... As the total pressure ratio of centrifugal compressors increases, the diffuser inlet flow becomes highly subsonic or even supersonic, which causes additional shock loss. The shock loss leads the stage performance to drop greatly. Pre-compression is an efficient method for reducing shock loss and improving the stage performance. To study the effect of wedge diffusers with pre-compression blades on centrifugal compressor performance, wedge diffusers with various pre-compression angles, divergence angles and numbers of blades were designed and investigated via a numerical method. As a result, it is found that the compressor stage achieves high peak efficiency when the pre-compression angle ranges from 2.5° to 5.5° and when the divergence angle ranges from 7° to 9°. As the number of blades increases, the total pressure ratio and adiabatic efficiency of the compressor stage increase slightly, whereas the surge margin of the stage decreases. 展开更多
关键词 wedge diffuser pre-compression high Subsonic centrifugal compressor
原文传递
Inducer/Exducer Matching Characteristics inside Tandem Impellers of a Highly Loaded Centrifugal Compressor
3
作者 LI Ziliang ZHAO Shengfeng +3 位作者 lu xin’gen HAN Ge YANG Chengwu ZHU Junqiang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第4期928-944,共17页
A centrifugal compressor usually operates with low isentropic efficiency and a terrible stable operating range, resulting from the complex impeller flow structure companied with the intense interaction among the impel... A centrifugal compressor usually operates with low isentropic efficiency and a terrible stable operating range, resulting from the complex impeller flow structure companied with the intense interaction among the impeller and the diffuser downstream. In many studies, the potential of centrifugal compressor tandem-impeller configurations for improving the compressor has been demonstrated. Whereas, compared with the convincing results on the tandem-designed axial compressors, the results on tandem impellers are limited and contradictory. Very little insight has been provided into the flow mechanisms inside tandem impellers, which is considered to be the primary reason for the confusion in tandem impeller design and application. Tandem impellers are expected to exhibit a totally different behavior due to the intense aerodynamic interaction between the inducer and the exducer, which substantially contributes to the flow structure and the compressor performance change. In the present study, a numerical study of a highly-loaded centrifugal compressor with various tandem designs was conducted to explore the inducer/exducer matching characteristics and the underlying flow mechanism inside tandem impellers. Two tandem impeller design parameters, namely, the inducer/exducer clocking fraction and the axial gap(overlap), were considered in the tandem impeller design process. The tandem impeller was also compared to the existing conventional impeller which the tandem impeller was redesigned for. The results demonstrated that the tandem-designed impeller can improve the centrifugal compressor stage performance and intense inducer/exducer interaction can be observed with changes in the clocking fraction and the axial gap(overlap). The tandem impeller performance is sensitive to changes in axial gap(overlap) when the suction side of the exducer blade is circumferentially close to the inducer blade. The fundamental reason for the performance variation in the inducer and the exducer lies in the inducer pressure change in the blade trailing edge that is determined by the Kutta condition. Additionally, the correlation between the tandem impeller slip effect and the discharge flow quality should be emphasized in the inducer/exducer gap jet analysis, in which the jet injection angle and the Coanda effect of the exducer suction surface critically affect the discharge flow characteristics. 展开更多
关键词 highly loaded centrifugal compressor tandem impeller inducer/exducer matching flow mechanism Kutta condition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部