藓结皮是荒漠生物土壤结皮的重要类型,在荒漠生态系统碳固定与碳排放过程中具有重要作用。研究长期氮添加对藓结皮光合生理活性和土壤有机碳(SOC)组分的影响,有助于理解藓结皮光合生理活性特征与荒漠生态系统土壤碳固存之间的关系及其...藓结皮是荒漠生物土壤结皮的重要类型,在荒漠生态系统碳固定与碳排放过程中具有重要作用。研究长期氮添加对藓结皮光合生理活性和土壤有机碳(SOC)组分的影响,有助于理解藓结皮光合生理活性特征与荒漠生态系统土壤碳固存之间的关系及其调控因子。为此,研究依托古尔班通古特沙漠野外长期(13a)氮添加实验,以齿肋赤藓形成的藓结皮为研究对象,选取0(N0)、1.0(N1)、3.0 g N m-2a-1(N3)三种氮处理,阐明长期氮添加对藓结皮光合生理活性和SOC组分的影响。结果表明:(1)相比对照,长期氮添加对结皮层颗粒有机碳(POC)与矿物结合态有机碳(MAOC)含量无显著影响,但显著减少了0—5 cm土层POC和MAOC含量的积累;(2)N1处理显著提高了叶绿素和非结构性碳水化合物(NSC)含量,而N3处理叶绿素a、叶绿素b、总叶绿素及NSC的含量分别显著降低了50.94%、42.49%、46.71%和50.85%;(3)可溶性糖的含量在N1处理下显著增加,N3处理则显著抑制了其积累,脯氨酸的含量随氮浓度呈显著下降的趋势,长期氮添加对可溶性蛋白含量无显著影响;(4)相关性分析表明,长期氮添加、光合生理活性与POC和MAOC含量无显著相关性,酸碱度、微生物量碳氮、电导率、硝态氮和铵态氮皆显著影响POC和MAOC的含量积累。研究揭示了长期氮添加对藓结皮的光合生理活性和SOC组分的影响,且光合生理活性的响应无法有效反映SOC组分变化,为理解荒漠生态系统中氮沉降对生物土壤结皮的影响提供数据支持。展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Drylands are highly vulnerable to climate change and human activities.The drylands of China account for approximately 10.8%of global drylands,and China is the country most severely affected by aridity in Asia.Therefor...Drylands are highly vulnerable to climate change and human activities.The drylands of China account for approximately 10.8%of global drylands,and China is the country most severely affected by aridity in Asia.Therefore,studying the spatial variation characteristics in soil multifunctionality(SMF)and investigating the driving factors are critical for elucidating and managing the functions of dryland ecosystems in China.Based on the environmental factors(mean annual precipitation(MAP),mean annual temperature(MAT),solar radiation(Srad),soil acidity(pH),enhanced vegetation index(EVI),and cation exchange capacity(CEC))and aridity from the“dataset of soil properties for land surface modeling over China”,we used non-linear regression,ordinary least square(OLS)regression,structural equation model(SEM),and other analytical methods to investigate the relationships of SMF with environmental factors across different aridity levels in China.SMF in different dryland regions varied significantly and showed a patchy distribution,with SMF index values ranging from–1.21 to 2.42.Regions with SMF index values from–0.20 to 0.51 accounting for 63.0%of dryland area in China.OLS regression results revealed that environmental factors like MAP,MAT,Srad,pH,EVI,and CEC were significantly related to SMF(P<0.05).MAP and MAT were correlated to SMF at the whole aridity level(P<0.05).SEM results showed that the driving factors of SMF differed depending on the aridity level.Soil pH was the strongest driving factor of SMF when the aridity was less than 0.80(P<0.001).Both soil CEC and EVI had a positive effect on SMF when aridity was greater than 0.80(P<0.01),with soil CEC being the strongest driving factor.The importance ranking revealed that the relative importance contribution of soil pH to SMF was greatest when aridity was less than 0.80(66.9%).When aridity was set to greater than 0.80,the relative importance contributions of CEC and EVI to SMF increased(45.1%and 31.9%,respectively).Our findings indicated that SMF had high spatial heterogeneity in drylands of China.The aridity threshold controlled the impact of environmental factors on SMF.展开更多
文摘藓结皮是荒漠生物土壤结皮的重要类型,在荒漠生态系统碳固定与碳排放过程中具有重要作用。研究长期氮添加对藓结皮光合生理活性和土壤有机碳(SOC)组分的影响,有助于理解藓结皮光合生理活性特征与荒漠生态系统土壤碳固存之间的关系及其调控因子。为此,研究依托古尔班通古特沙漠野外长期(13a)氮添加实验,以齿肋赤藓形成的藓结皮为研究对象,选取0(N0)、1.0(N1)、3.0 g N m-2a-1(N3)三种氮处理,阐明长期氮添加对藓结皮光合生理活性和SOC组分的影响。结果表明:(1)相比对照,长期氮添加对结皮层颗粒有机碳(POC)与矿物结合态有机碳(MAOC)含量无显著影响,但显著减少了0—5 cm土层POC和MAOC含量的积累;(2)N1处理显著提高了叶绿素和非结构性碳水化合物(NSC)含量,而N3处理叶绿素a、叶绿素b、总叶绿素及NSC的含量分别显著降低了50.94%、42.49%、46.71%和50.85%;(3)可溶性糖的含量在N1处理下显著增加,N3处理则显著抑制了其积累,脯氨酸的含量随氮浓度呈显著下降的趋势,长期氮添加对可溶性蛋白含量无显著影响;(4)相关性分析表明,长期氮添加、光合生理活性与POC和MAOC含量无显著相关性,酸碱度、微生物量碳氮、电导率、硝态氮和铵态氮皆显著影响POC和MAOC的含量积累。研究揭示了长期氮添加对藓结皮的光合生理活性和SOC组分的影响,且光合生理活性的响应无法有效反映SOC组分变化,为理解荒漠生态系统中氮沉降对生物土壤结皮的影响提供数据支持。
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
基金supported by the Xinjiang Outstanding Youth fund(2021D01E03)the National Natural Science Foundation of China(U2003214 and 41977099).
文摘Drylands are highly vulnerable to climate change and human activities.The drylands of China account for approximately 10.8%of global drylands,and China is the country most severely affected by aridity in Asia.Therefore,studying the spatial variation characteristics in soil multifunctionality(SMF)and investigating the driving factors are critical for elucidating and managing the functions of dryland ecosystems in China.Based on the environmental factors(mean annual precipitation(MAP),mean annual temperature(MAT),solar radiation(Srad),soil acidity(pH),enhanced vegetation index(EVI),and cation exchange capacity(CEC))and aridity from the“dataset of soil properties for land surface modeling over China”,we used non-linear regression,ordinary least square(OLS)regression,structural equation model(SEM),and other analytical methods to investigate the relationships of SMF with environmental factors across different aridity levels in China.SMF in different dryland regions varied significantly and showed a patchy distribution,with SMF index values ranging from–1.21 to 2.42.Regions with SMF index values from–0.20 to 0.51 accounting for 63.0%of dryland area in China.OLS regression results revealed that environmental factors like MAP,MAT,Srad,pH,EVI,and CEC were significantly related to SMF(P<0.05).MAP and MAT were correlated to SMF at the whole aridity level(P<0.05).SEM results showed that the driving factors of SMF differed depending on the aridity level.Soil pH was the strongest driving factor of SMF when the aridity was less than 0.80(P<0.001).Both soil CEC and EVI had a positive effect on SMF when aridity was greater than 0.80(P<0.01),with soil CEC being the strongest driving factor.The importance ranking revealed that the relative importance contribution of soil pH to SMF was greatest when aridity was less than 0.80(66.9%).When aridity was set to greater than 0.80,the relative importance contributions of CEC and EVI to SMF increased(45.1%and 31.9%,respectively).Our findings indicated that SMF had high spatial heterogeneity in drylands of China.The aridity threshold controlled the impact of environmental factors on SMF.