Erlangshan Pluton from Urad Zhongqi, central Inner Mongolia, is located in the middle segment of the northern margin of the North China Plate. The rocks consist mainly of diorites with gneissic structure. Petrochemica...Erlangshan Pluton from Urad Zhongqi, central Inner Mongolia, is located in the middle segment of the northern margin of the North China Plate. The rocks consist mainly of diorites with gneissic structure. Petrochemical characteristics reveal that the diorites belong to metaluminous, high- potassium calc-alkaline series, with chemical signatures of I-type granites. They are characterized by low SiOz contents (56.63%-58.53%) and A/CNK (0.90-0.96), high Al2O3 contents (17.30%-17.96%) and Na20/K20 ratios (1.20-1.70), enrichment in large ion lithophile elements (LILE, e.g., Ba=556-915 ppm, Sr=463-595 ppm), and relative depletion in high field strength elements (HFSE, e.g., Nb, Ta, Ti) in primitive mantle-normalized spidergram, and right-declined rare earth element patterns with slightly negative Eu anomalies (8Eu=0.72-0.90). They have Sr/Y ratios (20-25) evidently less than Kebu Pluton (49-75) to its east. Sensitive high resolution ion micro-probe U-Pb zircon dating of the diorites has yielded an intrusive age of 270±8 Ma. This leads us to conclude that Erlangshan diorites were formed by mixing between the middle or lower crustal-derived magma and minor mantle-derived mafic magma, followed by fractional crystallization, which was trigged by crustal extension and fault activity in post-collisional setting.展开更多
基金supported by the NationalNatural Science Foundation of China(No.40672146)
文摘Erlangshan Pluton from Urad Zhongqi, central Inner Mongolia, is located in the middle segment of the northern margin of the North China Plate. The rocks consist mainly of diorites with gneissic structure. Petrochemical characteristics reveal that the diorites belong to metaluminous, high- potassium calc-alkaline series, with chemical signatures of I-type granites. They are characterized by low SiOz contents (56.63%-58.53%) and A/CNK (0.90-0.96), high Al2O3 contents (17.30%-17.96%) and Na20/K20 ratios (1.20-1.70), enrichment in large ion lithophile elements (LILE, e.g., Ba=556-915 ppm, Sr=463-595 ppm), and relative depletion in high field strength elements (HFSE, e.g., Nb, Ta, Ti) in primitive mantle-normalized spidergram, and right-declined rare earth element patterns with slightly negative Eu anomalies (8Eu=0.72-0.90). They have Sr/Y ratios (20-25) evidently less than Kebu Pluton (49-75) to its east. Sensitive high resolution ion micro-probe U-Pb zircon dating of the diorites has yielded an intrusive age of 270±8 Ma. This leads us to conclude that Erlangshan diorites were formed by mixing between the middle or lower crustal-derived magma and minor mantle-derived mafic magma, followed by fractional crystallization, which was trigged by crustal extension and fault activity in post-collisional setting.