A hybrid grid-point statistical interpolation-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Forecasting (WRF) model was developed and applied to typhoon track foreca...A hybrid grid-point statistical interpolation-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Forecasting (WRF) model was developed and applied to typhoon track forecast with simulated dropsonde observations. This hybrid system showed significantly improved results with respect to tropical cyclone track forecast compared to the standard GSI system in the case of Muifa in 2011. Further analyses revealed that the flow-dependent ensemble covariance was the major contributor to the better performance of the GSI-ETKF system than the standard GSI system; the GSI-ETKF system was found to be potentially able to adjust the position of the typhoon vortex systematically and better update the environmental field.展开更多
Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this stu...Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.展开更多
基金supported by the Project for public welfare (Meteorology) of China(Grant No.GYHY201206006)the National Natural Science Foundation of China(Grant Nos.40975067 and 41175094)
文摘A hybrid grid-point statistical interpolation-ensemble transform Kalman filter (GSI-ETKF) data assimilation system for the Weather Research and Forecasting (WRF) model was developed and applied to typhoon track forecast with simulated dropsonde observations. This hybrid system showed significantly improved results with respect to tropical cyclone track forecast compared to the standard GSI system in the case of Muifa in 2011. Further analyses revealed that the flow-dependent ensemble covariance was the major contributor to the better performance of the GSI-ETKF system than the standard GSI system; the GSI-ETKF system was found to be potentially able to adjust the position of the typhoon vortex systematically and better update the environmental field.
基金supported by the National Natural Science Foundation of China (30860149 and 31360364)the Joint Support Program from Tropical Crop Breeding Engineering Center of Ministry of Education of China+1 种基金the Crop Science National Key Disciplines of China (lhxm-2012-2)the Key Scientific Research Program from Hainan Province,China (ZDZX2013023)
文摘Fusarium wilt of banana, which is caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4), is a serious soil-borne fungal disease. Now, the epigenetic molecular pathogenic basis is elusive. In this study, with methylation-sensitive amplification polymorphism (MSAP) technique, DNA methylation was compared between the leaves inoculated with Foc TR4 and the mock-inoculated leaves at different pathogenic stages. With 25 pairs of primers, 1 144 and 1 255 fragments were amplified from the infected and mock-inoculated leaves, respectively. DNA methylation was both changed and the average methylated CCGG sequences were 34.81 and 29.26% for the infected and the mock-inoculated leaves. And DNA hypermethylation and hypomethylation were induced by pathogen infection during all pathogenic stages. Further, 69 polymorphic fragments were sequenced and 29 of them showed sequence similarity to genes with known functions. And RT-PCR results of four genes indicated that their expression patterns were consistent with their methylation patterns. Our results suggest that DNA methylation plays important roles in pathogenic response to Foc TR4 for banana.