The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into...The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, ABs, Ls, and S3. The maximum crystallization temperature of zircon was estimated as 850℃, with the minimum of 550℃. The peak temperatures of the zircon crystallization range from 650℃ to 700℃. The abundances of Th and U in the zircon grains show large variation with the Th/U values 〉 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133-0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.展开更多
Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm i...Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm in inner pore diameter,and 20 nm in wall thickness were obtained by 40 V potentials anodization for 24 h.Their microstructures and surface morphologies were characterized by XRD,TEM,SAED and UV-vis spectroscopy.The photoelectrochemical properties of as-prepared unsensitized and dye-sensitized TNAs electrodes were examined under simulated solar light (AM 1.5,100 mW/cm2) illumination.The results showed that the photocurrent of the dye-sensitized TNAs electrodes reached 6.9 mA/cm2,which was 6 times more than that of the dye-sensitized TiO2 nanoparticles (TNPs) electrodes.It implied that the electron transport process and the charge recombination suppression within TNAs electrodes were much more favorable in comparison with that in the TNPs electrodes.Electrodes applying such kind of titania nanotubes will have a potential to further enhance the efficiencies of TNAs-based dye-sensitized solar cells.展开更多
基金supported by the Key Program of National Natural Science Foundation of China (Grand No.90914002)the China State Administrative Office of Ore-Prospecting Project for Critical Mines (Grant No.20089937)+1 种基金Nuclear energy research project:study on Sandstone-type uranium deposits prediction technology in Junggar superimposed large basin (Grant No.DH1142)the Introducing Talents of Discipline to Universities Program (B07011)
文摘The morphology, REE geochemistry and U-Pb geochronology of zircons from quartz monzodiorite in the Sunzhuang area, Fanshi County, Shanxi Province are presented in this study. The zircon crystals can be classified into four main types as: AB, L, S and P, and 24 subtypes such as AB4, ABs, Ls, and S3. The maximum crystallization temperature of zircon was estimated as 850℃, with the minimum of 550℃. The peak temperatures of the zircon crystallization range from 650℃ to 700℃. The abundances of Th and U in the zircon grains show large variation with the Th/U values 〉 0.4. The Th and U values also show a positive correlation in most zircons. The REE abundance of zircon in the quartz monzodiorite ranges from 280.4 ppm to 2143 ppm with an average of 856.4 ppm. The chondrite normalized zircon REE patterns show two types, one is characterized by HREE enrichment and LREE depletion with positive Ce-anomaly and negative Eu-anomaly whereas the other is HREE enriched and LREE depleted with negative Eu-anomaly but without positive Ce-anomaly, and relatively flat patterns. The LA-ICP-MS U-Pb geochronology on the zircons yields a mean age of 133-0.87 Ma. Our data on zircon morphology, composition and U-Pb geochronology reveal that the parent magma of the quartz monzodiorite which was emplaced during late Yanshanian had a mixed crust-mantle source, with crustal components dominating. The magma is inferred to have been water rich and alkaline with initial high oxygen fugacity. Post-magmatic hydrothermal activity occurred under relatively reducing conditions which was conductive for gold precipitation in the Yixingzhai gold deposit.
基金supported by the National Natural Science Foundation of China (10904128)the Zhejiang Provincial Natural Science Foundation (Y6100171 and Y6110467)Start-up Research Foundation of Zhejiang University of Science and Technology (F501108C01)
文摘Thin titanium oxide nanotube arrays (TNAs) films were synthesized by anodization of titanium foil in an aqueous dimethyl sulfoxide solution using a platinum foil counter electrode.TNAs up to 6.8 μm in length,120 nm in inner pore diameter,and 20 nm in wall thickness were obtained by 40 V potentials anodization for 24 h.Their microstructures and surface morphologies were characterized by XRD,TEM,SAED and UV-vis spectroscopy.The photoelectrochemical properties of as-prepared unsensitized and dye-sensitized TNAs electrodes were examined under simulated solar light (AM 1.5,100 mW/cm2) illumination.The results showed that the photocurrent of the dye-sensitized TNAs electrodes reached 6.9 mA/cm2,which was 6 times more than that of the dye-sensitized TiO2 nanoparticles (TNPs) electrodes.It implied that the electron transport process and the charge recombination suppression within TNAs electrodes were much more favorable in comparison with that in the TNPs electrodes.Electrodes applying such kind of titania nanotubes will have a potential to further enhance the efficiencies of TNAs-based dye-sensitized solar cells.