High concentrations of antimony(Sb) in soils and vegetables can cause potential health risk. However, the effect of Sb on the growth and response of crops are not well known and to date, there is still no Sb limit sta...High concentrations of antimony(Sb) in soils and vegetables can cause potential health risk. However, the effect of Sb on the growth and response of crops are not well known and to date, there is still no Sb limit standard for Allitic Udic Ferrisols in China. In this study, a greenhouse experiment was carried out to investigate the effect of antimony(Sb) on biomass, physiological performances,and macro- and micronutrient element concentrations of green Chinese cabbage(Brassica chinensis L.), as well as enzyme activities,in Allitic Udic Ferrisols from Hunan Province, China. Antimony was supplied at rates of 0(control), 2, 5, 10, 20, and 50 mg kg-1and thus with the background value of 1.0 mg kg-1, the Sb concentrations in the treated soil samples were 1, 3, 6, 11 21, and 51 mg kg-1, respectively. The results showed the leaf biomass and ascorbic acid content of cabbage significantly(P < 0.05) decreased by 30.6% and 48.3%, respectively, and soil urease and dehydrogenase activities also significantly(P < 0.05) decreased by 33.6%and 32.5%, respectively, when soil Sb concentration was 21 mg kg-1as compared with the control. The uptake of essential nutrient elements such as Mg, Cu, and Zn by cabbage was obviously affected, while the leaf soluble sugar content slightly changed when the soil Sb concentration exceeded 21 mg kg-1. Based on cabbage physiological responses and soil enzyme activities, the permissible concentration of 21 mg kg-1for Sb in Allitic Udic Ferrisols should be recommended.展开更多
基金supported by the National Natural Science Foundation of China(No.41201492)the Science and Technology Project of Changsha City,China(No.K1003056-31)
文摘High concentrations of antimony(Sb) in soils and vegetables can cause potential health risk. However, the effect of Sb on the growth and response of crops are not well known and to date, there is still no Sb limit standard for Allitic Udic Ferrisols in China. In this study, a greenhouse experiment was carried out to investigate the effect of antimony(Sb) on biomass, physiological performances,and macro- and micronutrient element concentrations of green Chinese cabbage(Brassica chinensis L.), as well as enzyme activities,in Allitic Udic Ferrisols from Hunan Province, China. Antimony was supplied at rates of 0(control), 2, 5, 10, 20, and 50 mg kg-1and thus with the background value of 1.0 mg kg-1, the Sb concentrations in the treated soil samples were 1, 3, 6, 11 21, and 51 mg kg-1, respectively. The results showed the leaf biomass and ascorbic acid content of cabbage significantly(P < 0.05) decreased by 30.6% and 48.3%, respectively, and soil urease and dehydrogenase activities also significantly(P < 0.05) decreased by 33.6%and 32.5%, respectively, when soil Sb concentration was 21 mg kg-1as compared with the control. The uptake of essential nutrient elements such as Mg, Cu, and Zn by cabbage was obviously affected, while the leaf soluble sugar content slightly changed when the soil Sb concentration exceeded 21 mg kg-1. Based on cabbage physiological responses and soil enzyme activities, the permissible concentration of 21 mg kg-1for Sb in Allitic Udic Ferrisols should be recommended.