In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radical p-NPNN by employing density-functional theory with generalized gradient approximation (GGA ) and local-spin...In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radical p-NPNN by employing density-functional theory with generalized gradient approximation (GGA ) and local-spin density approximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. The calculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpaired electron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π^* (NO) orbitals, and the main contribution of the spin magnetic moment comes from the π^* (NO) orbitals. By comparison, we find that the GGA is more suitable to describe free radical systems than LSDA.展开更多
The full-potential linearized augmented plane wave (FPLAPW) method with the generalized gradient approximations (GGA) is applied to study the compound [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<...The full-potential linearized augmented plane wave (FPLAPW) method with the generalized gradient approximations (GGA) is applied to study the compound [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB> (NITmPy = 2 - (3' - Pyridy1) -4, 4, 5, 5 - tetramethylimidazolin - 1 - oxy1 - 3 - oxide). The total density of states (DOS) and the partial density of states (pDOS) are calculated to explain the electronic and the magnetic properties of [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB>. It is found that [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB> is stable in the ferromagnetic state and the magnetic moment of the molecule mainly comes from the Cu atoms (0.518 μ<SUB>B</SUB>) with partial contribution from N, O atoms of nitronyl nitroxide radicals. There exist orbital hybridization between 3d orbital of Cu and p orbitals of N(1) (from pyridyl rings of the NITmPy ligands) and N(4) (from azido group) and the weak direct exchange interactions between Cu and O atoms of nitronyl nitroxides. In addition, the bridging carbon atom (C(6)) carries a significant negative spin density (-0.019 μ<SUB>B</SUB>). The sign alternation of the magnetic moment along zthe pyridyl ring is obtained, which agrees with experiments.展开更多
文摘In this paper, we study the electronic band structure and the ferromagnetic properties of the organic radical p-NPNN by employing density-functional theory with generalized gradient approximation (GGA ) and local-spin density approximation (LSDA). The density of states, the total energy, and the spin magnetic moment are calculated. The calculations reveal that the δ-phase of p-NPNN has a stable ferromagnetic ground state. It is found that an unpaired electron in this compound is localized in a single occupied molecular orbital (SOMO) constituted primarily of π^* (NO) orbitals, and the main contribution of the spin magnetic moment comes from the π^* (NO) orbitals. By comparison, we find that the GGA is more suitable to describe free radical systems than LSDA.
文摘The full-potential linearized augmented plane wave (FPLAPW) method with the generalized gradient approximations (GGA) is applied to study the compound [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB> (NITmPy = 2 - (3' - Pyridy1) -4, 4, 5, 5 - tetramethylimidazolin - 1 - oxy1 - 3 - oxide). The total density of states (DOS) and the partial density of states (pDOS) are calculated to explain the electronic and the magnetic properties of [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB>. It is found that [Cu(NTTmPy)<SUB>2</SUB>(N<SUB>3</SUB>)<SUB>2</SUB>]<SUB>n</SUB> is stable in the ferromagnetic state and the magnetic moment of the molecule mainly comes from the Cu atoms (0.518 μ<SUB>B</SUB>) with partial contribution from N, O atoms of nitronyl nitroxide radicals. There exist orbital hybridization between 3d orbital of Cu and p orbitals of N(1) (from pyridyl rings of the NITmPy ligands) and N(4) (from azido group) and the weak direct exchange interactions between Cu and O atoms of nitronyl nitroxides. In addition, the bridging carbon atom (C(6)) carries a significant negative spin density (-0.019 μ<SUB>B</SUB>). The sign alternation of the magnetic moment along zthe pyridyl ring is obtained, which agrees with experiments.