This paper investigates pilot-symbol-aided channel estimation/prediction for Multiple-Input Multiple-Output (MIMO) systems in fast fading environments. We first derive the design criteria of the optimal pilot blocks f...This paper investigates pilot-symbol-aided channel estimation/prediction for Multiple-Input Multiple-Output (MIMO) systems in fast fading environments. We first derive the design criteria of the optimal pilot blocks for energy, power and bandwidth-limited systems, respectively. Then two low-complexity channel estimation schemes are provided. Finally, we present a robust Minimum Mean Square Error (MMSE) channel estimator based on channel time correlation. Simulation shows the proposed MMSE estimator is considerably insensitive to channel statistics and significantly outperforms the traditional estimators with a low additional complexity in fast fading environments. By simply adjusting some parameters, the MMSE estimator can work as an estimator and a predictor simultaneously.展开更多
文摘This paper investigates pilot-symbol-aided channel estimation/prediction for Multiple-Input Multiple-Output (MIMO) systems in fast fading environments. We first derive the design criteria of the optimal pilot blocks for energy, power and bandwidth-limited systems, respectively. Then two low-complexity channel estimation schemes are provided. Finally, we present a robust Minimum Mean Square Error (MMSE) channel estimator based on channel time correlation. Simulation shows the proposed MMSE estimator is considerably insensitive to channel statistics and significantly outperforms the traditional estimators with a low additional complexity in fast fading environments. By simply adjusting some parameters, the MMSE estimator can work as an estimator and a predictor simultaneously.